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PSO in Ridge Regression to eliminate multicollinearity in 

a PTA welding process. 
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Abstract.  

Nowadays industrial processes present variability in their processes making their 

control difficult. Linear regression is a statistical tool that can solve this problem, 

unfortunately if the process variables are highly related, the model obtained by 

Ordinary Least Squares (OLS) is not suitable to control or predict. This condition 

is called multicollinearity. Fortunately, there are statistical metrics capable of 

detecting linear dependence, such as the variance-covariance matrix, the VIF 

(Variance Inflation Factors) and the condition number. Ridge Regression (RR) is 

a method that eliminates the problem of multicollinearity. The basic idea of RR 

is generate a parameter of bias 𝑘 that counteracts the dependency between the 

variables. There are methods that provide the value of bias 𝑘 but affect model fit. 

For this reason, other alternatives should be choose. Therefore, in this article, a 

global optimization was performed applying the PSO metaheuristic on the 

parameter of bias 𝑘, to obtain the value that eliminates multicollinearity without 

affecting the fit of the model, taking the coefficient of determination 𝑅2 as an 

objective function. The optimization was applied to a case study, the results were 

contrasted against the Ridge Regression method, obtaining better results for the 

Particle Swarm Optimization algorithm proposed in this article. 

Keywords: PSO, OLS, Ridge Regression, Multicollinearity, VIF, 

Optimization. 

1 Introduction 

Regression remains a widely used statistical technique to model and predict industrial 

processes [1, 2]. There are different methods that can be used to obtain the regression 

model estimators, depending on the characteristics of the process. If the variables do 

not have collinearity, the method of Ordinary Least Squares (OLS) is used, however in 

most of the processes the variables have linear dependence and alternative methods 

have to be chosen [3,4] to generate adequate estimators of the regression model. 
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Ridge Regression (RR) is a viable option to use to treat multicollinearity, this method 

proposed by Hoerl et al. [5] has been applied in other investigations to eliminate the 

linear dependence between the input variables [6,7] by means of a parameter of bias 𝑘 

that eliminates the collinearity problem. This value can be obtained using the technique 

called Ridge trace or an iterative method proposed by Hoerl et al. [8] Currently, there 

is recent research that has modified the iterative method to calculate the bias value, 

obtaining good results to eliminate multicollinearity [9, 10, 11]. However, although the 

previous articles work on this problem, none of them proposes an alternative to avoid 

reducing the model fit, which can be measured with 𝑅2 statistic. 

In addition, optimization is a tool that has been used in various investigations (see 

Strömberg [12], Munner et al. [13]) in order to find the values of the input variables 

that generate the optimal solution for the objective function. However, there are 

problems for which one cannot guarantee to find an optimal solution in a reasonable 

time and these are classified (according to the theory of computational complexity) as 

"difficult". When a difficult problem is addressed, nature-inspired algorithms such as 

PSO (Particle Swarm Optimization), produce good results (Zadeh et al. [14], 

BharathiRaja et al. [15], Liu et al. [16]) because they only evaluate a part of the 

solutions and not the whole set of solutions. 

Therefore, ones of the objectives of this work are to optimize the choice of the bias 𝐾 

matrix parameters that eliminate multicollinearity without affecting too much the 

statistical metric 𝑅2. 

2 Methods 

2.1 Multiple linear regression models 

The multiple linear regression model is used when the response variable 𝑦 depends on 

a set of return variables 𝑋, by matrix notation the model is expressed as: 

𝑦 = 𝑋𝛽 + 𝜀 (1) 

Where 𝑦 is a vector of 𝑛x1 observations, 𝑋 is a matrix of 𝑛𝑥𝑝 regressors, 𝛽 is a vector 

of 𝑝x1 regression coefficients, 𝜀 is a vector of 𝑛x1 random errors that are 𝑁𝐼𝐷(0, 𝜎2). 

To solve the regression model using Ordinary Least Squares (OLS) the coefficients of 

𝛽 are obtained with the equation: 

𝛽̂𝑀𝐶 = (𝑋′𝑋)−1𝑋′𝑦 (2) 

If the columns of the matrix 𝑋 are linearly independent then the inverse matrix (𝑋′𝑋)−1 

will exist, however when the regressors have a strong linear relationship, the inference 

of the estimators by OLS is wrong. This matrix problem is also called multicollinearity. 

2.2 Multicollinearity 

Multicollinearity can be defined in terms of the linear dependence between the columns 

of the matrix 𝑋 considering that their column vectors are [𝑋1,  𝑋2, … , 𝑋𝑝] so the equation 

can be established as follows ∑ 𝑡𝑗𝑋𝑗
𝑝
𝑗=1 ≈ 0. This implies that the matrix 𝑋′𝑋 will be 
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poorly conditioned because its determinant will be close to zero |𝑋′𝑋| ≈ 0. Therefore, 

the method of Ordinary Least Squares will produce poor estimators of the individual 

parameters of the model. A serious problem involving multicollinearity is reflected in 

the hypothesis tests of the model, since the Type 1 error (reject 𝐻0 when it should not 

be made) or the Type 2 error (accept 𝐻0 when it should not be). 

2.3 Multicollinearity detection 

There are several techniques to detect multicollinearity, Variance Inflation Factors and 

the analysis of the eigensystem are the best diagnoses available today because they are 

easy to calculate, direct interpretation and useful to investigate the specific nature of 

multicollinearity [17]. 

1. Variance Inflation Factors: For each term of the model the VIFs  measure the 

combined effect that the dependencies have between the regressors on the 

variance of each term, the Variance Inflation Factors are defined as: 

𝑉𝐼𝐹𝑗 =
1

(1 − 𝑅𝑗
2)

 
(3) 

𝑅𝑗
2 is the coefficient of determination obtained when the regression is made 𝑥𝑗 

compared to other 𝑝 − 1 regressors. If the VIF obtained are higher than 10 there 

is multicollinearity. 

2. Condition Number: If one or more eigenvalues are very small, it implies that 

there is almost linear dependence between the columns of the matrix. The 

condition number that is defined as: 

𝜂 =
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 
(4) 

Where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue and 𝜆𝑚𝑖𝑛 is the minimum eigenvalue 

of the 𝑋′𝑋 matrix. If 𝜂 > 1000 it indicates strong multicollinearity. 

2.4 Ridge Regression. 

A review of the literature indicates that there is a wide range of research related to 

Regression Ridge (see [18,19]), this method proposed Hoerl and Kennard in 1970 

suggests adding a parameter bias 𝑘 > 0 in the diagonal of the matrix 𝑋′𝑋 to eliminate 

multicollinearity coefficients 𝛽 of Ridge Regression are obtained by solving: 

𝛽̂𝑅 = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑦 (5) 

The parameter of bias 𝑘 can be obtained by means of the Ridge trace, this technique is 

subjective because a value must be chosen large enough to stabilize the coefficients of 

the model, but not unnecessarily large so as not to introduce too much bias affecting 

the Mean Square Error (MSE) obtained by the following equation: 

𝑀𝑆𝐸(𝛽̂𝑅) = 𝜎2 ∑
𝜆𝑗

(𝜆𝑗 + 𝑘)2

𝑝

𝑗=1

+ 𝑘2𝛽′(𝑋′𝑋 + 𝑘𝐼)−2𝛽 (6) 

 

141



 

Where 𝜆𝑗 are the eigenvalues of the matrix 𝑋′𝑋, the first term of the equation is the sum 

of the variances of the parameters in 𝛽̂𝑅 and the second term is the square of the bias, 

from Eq. (7) it is observed that if 𝑘 >  0 the bias in 𝛽̂𝑅 increases, however the variance 

decreases. The covariance matrix of 𝛽̂𝑅 is: 

𝑉𝑎𝑟(𝛽̂𝑅) = 𝜎2(𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑋(𝑋′𝑋 + 𝑘𝐼)−1 (7) 

Because Ridge Regression focuses on the choice of the bias parameter and since the 

Ridge trace procedure is considered subjective (because criteria are required for its 

choice), one analytical method that determines the k-value for the Ridge Regression is 

proposed in [8] as follows: 

𝑘 =
𝑝𝜎̂2

𝛽̂′𝛽̂
 (8) 

From Eq. (8) 𝛽̂ and 𝜎̂2 are determined from the Ordinary Least Squares solution. In a 

later publication [20] proposed an iterative procedure based on Eq. (8) the algorithm 

stops when (𝑘𝑗+1 − 𝑘𝑗)/𝑘𝑗 ≤ 20𝑇−1.3 where 𝑇 = 𝑇𝑟(𝑋′𝑋)−1/𝑝, at the end of the 

procedure the bias parameter 𝑘𝑗 is used for the Ridge Regression. This procedure has 

been modified by other authors such as [21] where they compared 26 alterations made 

to the analytical method by various researchers in recent years. 

2.5 Particle Swarm Optimization (PSO). 

The Particle Swarm Optimization algorithm was proposed by James Kennedy and 

Russell Eberhart in 1995, the PSO algorithm is an algorithm in the area of artificial 

intelligence classified as swarm intelligence, the algorithm is stochastic and inspired by 

behavior social of some animals [22]. The algorithm allows the solution space to be 

explored in multiple directions, simultaneously, avoiding local minima. 

The algorithm starts with a group of random particles (solutions) and then searches for 

optimal solutions by updating the generations. In each iteration, each particle is updated 

with two "best" values. The first value called pbest is the best solution you have 

achieved so far. The other "best" value called gbest is the best overall in the entire 

swarm. After finding the best two values, the particles update their velocity and 

positions applying equations (9) and (10). 

 

𝑣𝑖
𝑘+1 = 𝑤 ∗ 𝑣𝑖

𝑘 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑔𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑥𝑖

𝑘) (9) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (10) 

Where 𝑣𝑖
𝑘+1, 𝑣𝑖

𝑘 are the velocity of the particle in iteration 𝑘 + 1 and 𝑘 respectively. 

Also 𝑥𝑖
𝑘+1, 𝑥𝑖

𝑘 are the position of the particle in iteration 𝑘 + 1 and 𝑘 respectively. 

Furthermore 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2 are random numbers evenly distributed between (0,1). The 

coefficients 𝑐1 and 𝑐2 indicate the degree of confidence in the best position found by 

the individual particle (cognitive parameter) and that of the entire swarm (social 

parameter), respectively, 𝑤 is the weight of inertia used to achieve a balance in The 

exploration and exploitation of the search space and plays a very important role in the 

convergence behavior of PSO. The inertia weight is dynamically reduced from 1 to 

about 0 in each generation according to (11): 

 

142



 

𝑤𝑖 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

∗ 𝑖𝑡𝑒𝑟 
(11) 

Where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations and 𝑖𝑡𝑒𝑟 is the current number of 

iterations, 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 are the maximum and minimum inertia weight values. The 

position of each particle is updated using its velocity vector as shown in Eq. (10). 

3 Application. 

A PTA (Plasma Transfer Arc) welding process is modeled where 4 input variables 

are involved and the relationship against an output variable is studied. Table 1 shows 

the 33 observations of the process: 
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Whit process data of Table 1 the bias is calculated to eliminate multicollinearity. Table 

2 shows and compare the results of the bias 𝑘𝑖 parameters obtained by the three 

techniques OLS, RR and PSO. 

 

 
 

Table 3 shows the results of the Variance Inflation Factors to determine the elimination 

of multicollinearity. If any VIF value exceeds 10 then the linear dependency is still 

present among the regressors. 

 

 
 

Table 4 shows the coefficient of determination 𝑅2 for OLS, RR and PSO. This 

statistical metric indicates the proportion of variance explained by the model. A value 

for 𝑅2 close to 1 implies that most of the variability of prediction 𝑦 is explained by the 

regression model. 

 

 

4 Conclusions. 

As shown in Table 2, there is more than one way to obtain the bias parameters that 

eliminate multicollinearity, so it is necessary to include other metrics that determine 

which of the techniques is better. Furthermore, considering that by means of the PSO 

metaheuristic a bias vector is obtained and not just a parameter as in Ridge Regression, 

it is necessary to indicate what effect it has on the regression.  

A first metric considered was the Variance Inflation Factors since they indicate the 

degree of multicollinearity presented by input variables, as observed in Table 3 when 

applying Ordinary Least Squares the 𝑉𝐼𝐹1 and 𝑉𝐼𝐹2 have value of 33.77 and 34.86 

respectively, this indicates that the data present collinearity problems because the 

144



 

values should not be exceed than 10. When applying Ridge Regression the four VIF 

values were less than 10, thus indicating that the bias value 𝑘 = 0.99812 obtained by 

the method [20] eliminates multicollinearity between variables. The same occurs with 

the bias vector generated by PSO, the four VIF are less than 10. 

Table 4 shows the results where the coefficient of determination 𝑅2 is considered as a 

metric. For OLS an 𝑅2 of 74.51% is obtained, the result could be considered adequate, 

however, in the presence of multicollinearity, the model generated unstable regression 

estimators. In RR an 𝑅2 of 40.70% is obtained, the percentage is far from 1 for the 

model to be considered representative of the process, even when multicollinearity has 

been eliminated. With the PSO method an 𝑅2 of 73.67% is obtained, it is considered a 

better result than the previous two, because collinearity is eliminated and the model fit 

is not affected too much. 

In conclusion, applying PSO to obtain the parameters of bias 𝑘 is better than OLS and 

RR because PSO in addition to eliminating multicollinearity and having a model fit 

close to 1, more stable regression estimators will be obtained. 
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