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Abstract: Often, welding processes used in the industry affect the mechanical properties of 
materials and quality of a manufactured product. There is, however, an alternative process 
named Friction Stir Welding (FSW), which is an solid state welding process developed to weld 
light alloys without compromising their mechanical properties. It is of interest to monitor the 
performance of FSW process to detect loss of quality. In practice, superficial and internal 
defects can be found; they can be identified through simple visual inspection and through 
visual recognition on destructive testing respectively, both procedures represent inspection 
by attributes. Therefore a multi-attribute control chart is assessed to monitor the process. 
Commonly, multi-attribute control charts involve high sampling rates to ensure accurate 
monitoring. In this paper, a multi-attribute control chart is proposed, considering the use of 
empirical control limits, instead of the theoretical ones, in order to improve its accuracy and 
lessen the small sample sizes effect. The performance of proposed approaches is analyzed by 
means of Monte Carlo simulation. The results suggest that the performance of the empirical 
designs is better than the theoretical ones in all tested cases. Finally, the results of monitoring 
FSW process data are detailed.

Key-words: FSW; Attribute control chart; Categorical defects; Small sample sizes.

Um Gráfico de Controle de Múltiplos Atributos para Monitorar o Processo 
de Soldagem por Fricção Considerando Tamanhos de Amostra Pequenos
Resumo: Frequentemente, os processos de soldagem usados   na indústria afetam as propriedades 
mecânicas dos materiais e como resultado a qualidade de um produto manufaturado. Existe, 
no entanto, um processo alternativo denominado Soldagem por Fricção e Mistura Mecânica 
(FSW - Friction Stir Welding), que é um processo de soldagem em estado sólido desenvolvido 
para soldar ligas leves sem comprometer suas propriedades mecânicas. Nesta perspectiva, é 
interessante monitorar o desempenho do processo FSW para detectar a deterioração na qualidade 
das juntas soldadas. Na prática, defeitos superficiais e internos podem ser encontrados; eles 
podem ser identificados por meio de inspeção visual simples, que não é muito precisa, e por 
meio do reconhecimento visual em testes destrutivos, respectivamente, ambos procedimentos 
representam inspeção por atributos. As características de qualidade categóricas relacionadas a 
defeitos internos precisam de atenção especial, portanto, um gráfico de controle de múltiplos 
atributos é avaliado para monitorar o processo. Comumente, os gráficos de controle de múltiplos 
atributos envolvem altas taxas de amostragem para garantir um monitoramento preciso e reduzir 
o risco de um produto defeituoso atingir o cliente. Neste trabalho, um gráfico de controle de 
múltiplos atributos é proposto para monitorar um processo de FSW, considerando o uso de 
limites de controle empírico, ao invés dos teóricos, a fim de melhorar sua precisão e diminuir o 
efeito de amostras de tamanho pequeno. O desempenho das abordagens propostas é analisado 
por meio da simulação de Monte Carlo. Os resultados sugerem que o desempenho dos desenhos 
empíricos é melhor que os teóricos em todos os casos testados. Finalmente, os resultados do 
monitoramento dos dados do processo FSW são detalhados.

Palavras-chave: FSW; Carta de controle por atributos; Defeitos categóricos; Amostras pequenas.

1. Introduction

The automotive industry has been searching for materials that allow it to reduce 
the vehicles’ weight, with the aim of reducing fuel consumption and comply with the new 
safety regulations. Aluminum is used in the aerospace and automotive industries, and it 
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represents a feasible alternative. In that sense, a greater understanding and knowledge of how this material can 
be welded conserving mechanical and metallurgical properties at welds is required. It is necessary to understand 
the mechanisms that produce such changes in order to comply with the desired performance of the welded joints 
and the quality standards established in the manufacturer’s design bases. Conventional welding processes affect 
its mechanical properties; some problems are associated with the presence of a tenacious aluminum oxide, high 
thermal conductivity, high thermal expansion coefficient, solidification shrinkage and absorbed gases in molten 
aluminum (Ugrasen et al., 2018). Friction Stir Welding (FSW) is an advanced solid state welding process invented 
in 1991 by the Welding Institute of the United Kingdom. FSW process is a feasible option to weld aluminum alloys 
without compromising their mechanical properties, and it also brings improvements in production volume, lack 
of inputs, health and environmental problems (Dawes and Thomas, 1999).

FSW process uses a non-consumable rotating tool with a probe and shoulder which goes forward through 
the material to be joined (Muthu Krishnan et al., 2018). This action causes plastic deformation because of the 
friction heat; thus, welded joints can present superficial and internal defects. The ISO states that all welds shall 
undergo inspection for conformance (International Organization for Standardization, 2011). In fact several defects 
associated to the FSW process are identified, obtaining categorical quality characteristics. Internal defects can 
be detected by means of X-ray examination and recognition on destructive testing, both in a visual context. 
For instance, some of those categorical defects in FSW are wormhole, kissing bond and hooking, among others. 
To avoid problems or accidents related to defective pieces reaching final clients, it is of interest to monitor the 
welded joints quality adequately.

Monitoring and controlling the FSW process quality is possible by means of Statistical Process Control (SPC) 
which comprises a powerful technique called control chart. Several approaches have been proposed to control 
quality characteristics such as continuous, discrete, univariate and multivariate. For instance, the multi-attribute 
control chart is capable of monitoring more than one categorical quality characteristic simultaneously. It can be 
used in processes where several categorical defects can appear, or not, in a treated piece; commonly, the defect 
identification is through visual inspection. Recently, multi-attribute charts have been receiving more attention. 
The current widespread applications of attribute charts are due to the simplicity in handling attribute quality 
characteristics, the capability of checking multiple quality requirements and the prevalence of count data in many 
industries and manufacturing sectors (Haridy et al., 2014). Moreover, recent approaches consider attribute control 
charts to monitor process means instead of variable control charts (Melo et al., 2017; Quinino et al., 2017; Leoni and 
Costa, 2018). In the control charts field, many approaches, generalizations and modifications have been proposed. 
For  example, the adaptive control charts consider a variable sample size or a variable sample size frequency, or 
both (Mahadik and Shirke, 2011; Seif et al., 2011; Faraz et al., 2012). In control charts with sequential sampling, 
the sampling is made in steps according to the location of the statistic values (Khoo et al., 2010; Irianto and Juliani, 
2010; Costa and Machado, 2011). There is another type of control chart named synthetic, which combines a classic 
control chart and the monitoring of a random variable, namely, the number of inspected samples among two 
consecutive out-of-control signals (Ghute and Shirke, 2008; Khoo et al., 2013).

Most of control charts approaches require a large sample size since they are defined by impractical statistical 
assumptions, such as charts proposed by Li et al. (2014), Cozzucoli (2009), Chiu and Kuo (2008) and others. 
However, there are processes where collecting large sample sizes is difficult, e.g. when the production standard is 
low, or when inspection requires destructive tests; such as the FSW process in which monitoring is based on high 
cost inspection. Consequently, a multi-attribute control chart with no high requirements on sample size must be 
selected. Some researchers have been focused in the problem of having a small sample size to develop and apply 
the attribute and multi-attribute control chart. For example, Aebtarm and Bouguila (2011) present a review of 
methods employed to improve the sensitivity of attribute C control chart and inspection cost. A useful approach 
is the one proposed by Mukhopadhyay (2008). This work details that the multi-attribute 2D  control chart does not 
use the chi-squared distribution; this implies that a minimum expected frequency is not necessary to ensure its 
performance. The author states that this chart does not require large sample sizes to operate efficiently in statistical 
terms. Nevertheless, this approach is based on an asymptotic approximation to Multinormal distribution, which 
could be inefficient to certain sample sizes, in fact, small sample sizes, causing inaccurate monitoring due to chart 
power loss; it increases the risk of a defective product reaching the customer.
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In order to lessen the small sample size effect, in this paper an approach based in empirical distribution for 
selecting the control limits of the 2D  chart is proposed. Therefore, the chart designs suitable for the FSW process 
were obtained by Monte Carlo simulation. A comparison between theoretical and empirical control limits was 
accomplished. The results suggest that the performance of the empirical designs is better than the theoretical 
ones in all tested cases. Additionally, a procedure to select empirical control limits is provided. Results show that 
the proposed multi-attribute control chart represents a reliable option to monitor an FSW process when defects 
must be identified by means of simple visual recognition on destructive testing. The consideration of small samples 
translates into low inspection costs and it also reduces the risk of a defective product reaching the customer.

2. The Multi-attribute 2D  Control Chart

The control chart proposed by Mukhopadhyay (2008) is able to monitor more than one attribute simultaneously. 
It is based on a generalization of the Mahalanobis distance and the multinomial distribution. This chart is suitable 
to monitor processes where a produced unit can be classified on several excluding nonconforming categories or 
defects.

Assume that in a production process, a finished piece can be classified in one and only one of K 1−  
nonconforming categories (categorical defects) and 1 conforming category (nondefective pieces). Let ijp  be the 
independent observed proportion of items of the sampling time i in the category j ( , , i 1 2= … and ,j 1  2  k= … ) in 
a sample of size iN , so, ( ), , , ,  T

i1 i2 i3 ik ip p p p   p… =  is the vector of proportions observed from the process. Suppose 
[ ], , ...,  T

1 2 kp p   p    p=  denotes the vector of proportions of an in-control process; Tp  can be estimated either by 
means of a historical database or arbitrarily specified. Then T

ip  has a multinomial distribution with parameters 
Tp . In the rest of the paper Tp  will be called the target proportions vector, or shortly, the target vector. It is clear 

that the target vector will be fixed to represent a production process having high quality, this is, small proportion 
values in nonconforming categories and a greater proportion value in the conforming one.

For multinomial data, a generalized Mahalanobis distance is defined in Equation 1:
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Since the covariance structure indicates an increment in a multinomial vector component requires a decrement 
in any other component; this result in negative covariance.

Then, in a particular point in time, 2
iD  measures the distance between the observed and the target vector. iUCL, 

the upper control limit for 2
iD  can be computed with Equation 2 using the theorem provided by Mardia et al. (1979),
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where the quantity , ,  
iK 1 N K 2   F α− − +  is the quantile α  of the F distribution with (K 1− ) and iN K 2− +  degrees of 

freedom respectively (for details see Mukhopadhyay, 2008).

2.1. Distributional assumption discussion

Even though Mukhopadhyay (2008) suggests that the 2D  control chart can be employed with small samples, 
it is reasonable to think that the chart can be deficient when the sample size is small. The expression to compute 
the control limit is based on an asymptotic approximation. Mardia et al. establish that if ( , )pN µ ∑x : , then 
( ) ( ) ( )'  ,2m T p mµ µ− −x M x : , which is true only if the x vector follows a Multinormal distribution (Mardia et al., 

1979). On the other hand, the  2D statistic defined in (1), is a generalization to the multinomial case, and in this 
case, ip  has a multinomial distribution with  

T
p  parameter Mukhopadhyay (2008). Although the distribution of ip  

can be approximated to a Multinormal distribution, such approximation is asymptotic regarding the sample size. 
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Therefore, if the sample is insufficient, this assumption will not be met and the efficiency of the control chart 
2D  will be affected.

Therefore, considering that process quality can be determined by presence or absence of defects, multinomial 
distribution is used to model the FWS process quality by means of proportions vector. Note that proportions vector 
includes information about failure mode. This vector is a sufficient statistic due to contain all information about 
the real proportion of defects. The covariance matrix is obtained from this vector, as mentioned.

3. Empirical Multi-attribute 2D  Control Chart

In order to improve the  2D  chart efficiency on small sample sizes, a general procedure for selecting empirical 
control limits instead of the theoretical ones is developed considering two essential parts as follows:

 Part I. Empirical distribution

It is necessary to set: categories k (defects number plus 1), sample size n (desired sample size,  n k> ) and 
target vector   

T
p.

In practice, if target vector  
T

p  is arbitrary selected, case (a) (above described) must be used; so that 0p  value 
should be set, for example, according to the company quality standards. Then, practitioners can apply (3) to 
generate the target vector. Otherwise, target vector can be estimated from a process data base, it must be represent 
in-control process (case (b), above labeled). However, it is required a process under stable operating conditions 
in order to be monitored. It is worth mentioning that when process is unstable, statistical methods like Design 
of Experiments, Analysis of Variance, regression among others, can help to establish relationship between input 
variables and defects; so, designed requirements could be fulfilled (Qiu, 2014).

Then, for given k, sample size n and target vector   
T

p :

1. Obtaining multinomial vectors. By means of Monte Carlo simulation, random multinomial vectors must be 
obtained with the  Tp  parameter;

2. Calculating  2D . For each random vector the 2D  statistic is computed by Equation 1;

3. Pre-selecting control limits (PCL). Percentiles of the 2D  calculated values are obtained, in which the limit 
control is chosen (for example, 0.90 to 0.99 with 0.01 shifts).

Part II. Control limit selection

For selecting the control limit, it is necessary to assess the performance of each PCL, assuming different 
variations on the observed vector ip . The performance measurement commonly used to evaluate the control chart 
efficiency is the Average Run Length (ARL). It is assumed that the process starts in-control, i.e.  ip p= , and sometime 
after, a process shift occurs ( ip  p≠ ). It is assumed that the increase in ip  occurs between sampling times. It is also 
assumed that the items produced are independent, and that when the process is in the out-of-control state, it 
remains in this state until there is an intervention to bring it back to the in-control state. The ARL is defined as the 
average number of samples collected from the process until an out-of-control signal occurs. When the process is 
in-control, an out-of-control signal is a false alarm, so, it is desirable that the ARL is large, in order to have a low 
false alarm rate, and it is denoted by 0ARL . Moreover, when the process is out-of-control, the ARL should be small 
to provide a fast detection of the quality changes. In this case, it is denoted by 1ARL .

1. Out-of-control scenarios. To simulate out-of-control possible scenarios, multinomial random vectors were 
generated with the 1p  ( 1p  p≠ ) parameter. At least two cases were able to be considered for the simulation.

(a) All defects may occur with the same probability.

(b) Each defect has different probability of occurrence.
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The control chart designs were obtained considering (a), for this the target vector Tp  was established in 
Equation 3:

( ) ( ) ( )  , / , , /T
0 0 0p p 1 p k 1 p k = − … −   (3)

{ }. , . , .0p 0 90 0 95 0 99=  are selected, and 
T
1p  is calculated by Equation 4:

( ) , ( / ), ,  ( / )T
1 1 2 kp p p k p kρ ρ ρ= − + … +    (4)

where ρ represents a variation in the process quality, in this case magnitude shifts { }. , . , . . .0 00 0 01 0 02 0 40ρ = …  are 
assumed. The particular case 0ρ = , corresponds to an in-control process and is employed to calculate the  0ARL .

The p vectors were simulated from binomial independent distributions, through scaling p to sum 1 and satisfy 
the multinomial law (Kachitvichyanukul and Schmeiser, 1988). In that sense, binomial random data generation 
depends on sample size and the proportions vector. Note that covariance matrix is obtained from p as it was 
mentioned in section 2.

2. Calculating 2D . By means of Equation 1, the 2D  statistic is computed for random vectors corresponding 
to each out-of-control scenario. Note that 2D  statistic is based on Mahalanobis distance, which considers 
covariance matrix of the multinomial distribution.

3. ARL estimation. An implementation of the control chart must be simulated, for this:

3.1 2D  values are compared with the corresponding control limit. From this comparison, a vector with 
0 and 1 elements will be obtained, where 0 means 2D PCL<  and 1 means that  2D PCL≥ .

3.2 Run lengths are obtained, a run length is the sampling quantity until an out-of-control signal occurs 
( 2D PCL≥ ).

3.3 Finally, the ARL is calculated as the average of the run lengths calculated in the previous step. Resulting 
in an estimation of the ARL for each out-of-control scenario, so that, for each given k, n and Tp  values, 
ARL values curves are drawn, which correspond to each ρ and PCL.

4. Selecting empirical control limits (ECL). In each case, for selecting the empirical control limit, the ARL curves 
of each PCL are compared. The PCL whose ARL curve approximates more rapidly to 1 as ρ increases and 
presents an 0ARL 200≥  (or the bigger 0ARL  value instead) is selected. Thus, the selected control limit is 
the one that shows better performance in ARL terms. For attribute control charts a reasonable criterion to 
select designs is to consider 0ARL 200≥  (Araújo Rodrigues et al., 2011). However, it was decided to include 
designs with lower 0ARL  values when the requirement was not satisfactory.

By following the proposed methodology: considering two different categorical defects in the FSW process, 
also one additional category considered the fact that defects can be found simultaneously in the same piece, and 
a conforming category of non-defective pieces, hence, the control chart design with k 4=  is obtained, results are 
shown in Table 1.

4. Monitoring the FSW Process

4.1. Friction Stir Welding process description

FSW is a joining technique in solid state developed mainly to weld light alloys. The process requires the use 
of a cylindrical tool of hard material, which is introduced into the pieces, forging and stirring the material until the 
weld is done. During this process, the material is plasticized without achieving the melting point by the rotation 
and advancing of the tool, generating a refined microstructure with improved mechanical properties; Figure 1 
shows the FSW process.
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Table 1. Empirical 2D  chart and 2D  (conventional) chart designs for  k 4= , several 0p  and n values; the desired 
proportion of non-defective pieces and sample size, respectively. ECL empirical control limit, UCL, upper control 
limit and 0ARL , the in-control Average Run Length are showed in columns 4-7.

Case p0 n
Empirical 2D  chart 2D  chart

ECL 0ARL UCL 0ARL

1 0.9 3 6.7531 100.7419 48630.1681 >6000
2 0.95 7.7992 163.3517 48630.1681 >6000
3 0.99 10.5054 222.1527 48630.1681 >6000
4 0.9 4 6.3086 115.2890 594.9972 >6000
5 0.95 6.7018 235.1376 594.9972 >6000
6 0.99 7.7284 200.8734 594.9972 >6000
7 0.9 5 6.1852 209.2582 147.2835 >6000
8 0.95 9.6456 180.3038 147.2835 >6000
9 0.99 12.1268 120.0488 147.2835 >6000
10 0.9 10 5.8951 186.9446 28.4662 >6000
11 0.95 6.0702 193.0958 28.4662 >6000
12 0.99 12.1324 298.0578 28.4662 >6000
13 0.9 15 5.2719 167.5292 19.8671 >6000
14 0.95 5.8577 211.1191 19.8671 >6000
15 0.99 8.9156 141.0744 19.8671 2045.3333
16 0.9 20 5.0341 172.2079 16.9730 >6000
17 0.95 6.0058 180.7009 16.9730 >6000
18 0.99 7.0819 189.2469 16.9730 >6000
19 0.9 25 4.8273 198.3758 15.5376 >6000
20 0.95 6.0084 187.1380 15.5376 >6000
21 0.99 9.7789 198.8774 15.5376 1864.1667
22 0.9 30 4.7144 188.0109 14.6832 >6000
23 0.95 5.2575 169.9843 14.6832 >6000
24 0.99 8.5490 207.3138 14.6832 1483.833

Figure 1. Schematic drawing of FSW process (Rajiv and Murray, 2007).
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4.2. Quality inspection

In order to assess the quality of the joint, visual inspection (VI) is the first method employed. This step is 
executed to avoid unnecessary cost, and to determine whether the piece complies with the minimum quality. 
Some FSW defects can be detected using VI, such as flashing and surface cracks (American National Institute 
of Standards, 2010). However, a deeper analysis using destructive tests must be performed in order to identify 
defects that were not evident using non-destructive tests. For instance, among others, some detrimental defects 
in FSW are kissing bond and hooking (Lohwasser and Zhan, 2001). Those defects are related to heat generated 
by probe rotation velocity and the increment in advance velocity. This inhibits tool heat increasing, producing an 
inadequate consolidation in material (Morales-Bazaldúa, 2017). Therefore, considering that process quality can be 
determined by presence or absence of defects, multinomial distribution is used to model the FWS process quality 
by means of proportions vector, which includes information about failure mode. This vector is a sufficient statistic 
due to contain all information about the real proportion of defects.

4.3. Performance of the empirical multi-attribute 2D  control chart in FSW

For monitoring the FSW process, kissing bonding and hooking are important quality characteristics of the 
welded joints to be monitored. However, both defects can appear simultaneously in the same piece, so an additional 
category is considered in order to classify the pieces with both defects. In the process, the two different defects 
and the additional characteristic are equally likely to appear, and it is desirable to maintain the conforming pieces 
proportion at 0.90. Thus, a finished piece can be classified in one and only one of the k 4=  categories (including 
the non-defective pieces category). A n 5=  sample size is employed, since a destructive test inspection is used.

In order to investigate the effect of the sample size and compare the performance of both approaches 
(empirical and conventional), ARL values were obtained by means of Monte Carlo simulation. The results are shown 
in Figure 2; each dotted line represents the ARL values for different sample sizes and several quality shifts (ρ). 
Plots for n 10<  are not shown for 2D  chart because the ARL values exceed the number of computational cycles 
employed for the simulations (6000). The same happened for ,n 10> , but only for .0 12ρ <  in the worst case; for 
comparative purposes we decided to set these ARL values at 6000.

It can be observed in Figure 2a that in all cases, the 2D  chart performance is poor in ARL terms; the best 
efficiency is for n 30=  and the worst is for  n 10= . All of the scenarios present too big ARL values (greater than 
6000) for small ρ values. Besides, the performance is chaotic in different intervals of ρ in each case. Hence, for all 
sample sizes tested, the chart is completely impractical because of the huge insensitivity and instability in detecting 
quality shifts. In that sense, it is concluded that using the conventional 2D  control chart with small samples (n 30≤ ) 
is not suitable for the studied FSW process and similar ones.

Figure 2. (a) ARL values for 2D  chart and (b) ARL values for empirical 2D  chart.
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On the other hand, as it can be seen in Figure 2b, the empirical approach shows better performance, more 
sensitivity and stability as  ρ increases, i.e. as the process quality decreases. The best efficiency is for n 30=  and 
the worst is for  n 3= , but the performance is satisfactory in all tested circumstances. Thus, it can be concluded 
that by using empirical limits instead of theoretical ones the efficiency of the control chart for small sample sizes 
(n 30≤ ) is improved. So, the 2D  chart with empirical limits is a reliable option for monitoring the studied FSW 
process. A procedure for monitoring the process with this approach is described below.

4.4. Monitoring procedure

1. Selecting the 2D  control chart design with empirical limits. According to the process characteristics, the design 
selection consists of: (i) selecting the most convenient design in Table 1 and (ii) applying the methodology 
described in Section 3. For example, design 7 of Table 1 with control limit .ECL 6 1852=  is the most suitable 
for this analyzed FSW process.

2. Drawing the 2D  chart with empirical limits, employing the ECL value. Figure 3a shows the chart applied to 
FSW data.

Figure 3. FSW defective pieces macrographs, picture shows pieces with the defect (a) kissing bonding; (b) hooking; 
and (c) kissing bonding and hooking, respectively.

3. Monitoring the process

3.1. In equidistant intervals of time, for example, each hour, a sample of 5 finished pieces is collected from 
the process.

3.2. Inspect the pieces in order to identify the presence of defects. The method for detecting samples defects 
consisted in metallographic analysis, transversal cutting of the sample, grinding and a three polishing steps 
(diamond paste of 16, 1.25 and 1 μm for 20 minutes each, colloidal silica of 0.01 μm for 30 minutes and 1 
μm alumina for 3 minutes). The presence of these defects resulted in a discontinuity leading into a failure 
of the joint, in that sense any indication of this condition is considered defect. Then each piece is classified 
according to the presence or absence of defects the results are arranged in a vector. The categories must 
always be registered in the same order. The ith element of this vector represents the quantity of pieces 
classified for , , , i 1 2 3 4=  categories. For instance, a dataset of 5 samples from the local FSW process is 
shown in Table 2. Also, the visual appearance of defective pieces is shown in Figure 3: (a) kissing bonding, 
(b) hooking and (c) kissing bond & hooking.

3.3. Calculate the observed proportion vector T
ip  by dividing the quantity of pieces classified in each category 

by sample size.

3.4. Calculate 2D  using Equation 1, and plot the resultant value in the empirical control chart. If the point 
is under the control limit ( 2D ECL< ), the process is then declared in-control. Otherwise, if the point 
is above the control limit ( 2D ECL≥ ), the process is declared out-of-control and it must be stopped to 
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avoid more defective pieces. An examination must be performed to determine the reason of the quality 
deterioration. This assessment is made by means of observation of plotted points and lines of ECL in the 
chart, see Figure 4a. Table 2 shows 2D  values and recorded data from the FSW process.

Table 2. Data recorded from local FSW process, columns 2-4 correspond to the categorical defects of the process; 
column 5 is for non-defective pieces, 2D , test statistic, is showed in column 6.

Sample Kissing bond Hooking Kissing bond & 
Hooking Non-defectives 2D

1 0 0 0 5 0.5556*
2 1 1 1 2 13.8889
3 3 0 0 2 49.8889
4 1 0 2 2 25.8889
5 1 1 2 1 31.2222

*Since all pieces are Non-defectives, this particular 2D  value shows quality improvement.

Figure 4. (a) Empirical limits 2D  control chart and (b)  2D  control chart.

Data showed in Table 2 is preliminary for the chart implementation. For comparative and illustrative 
purposes, in Figures 4a and 4b, the 2D  control chart with empirical limits and the traditional 2D  chart are showed 
respectively. Note that the control limit of the conventional 2D  chart was calculated with Equation 2.

It can be observed in Figures 4a and b that the process starts in-control. On the second sampling interval a 
shift occurs, which is detected only by the empirical 2D  chart; since it is a preliminary phase, no action is applied 
and the process continues. However, it is important to highlight that the conventional 2D  chart does not detect 
any samples at all as out-of-control; instead the proposed 2D  chart with empirical limits indicates that the process 
is out-of-control through interval 2, which is a more precise representation of reality.

Hence, based on the obtained results, it is possible to assure that the designed empirical 2D  control chart 
can be implemented at the production line to monitor the FSW process with the considered characteristics and 
also, it is possible to analyze the capability of the process for manufacturing products with the desired welded 
joints quality; deeming the advantages of FSW process over the joints’ mechanical properties. Therefore, the 
automotive industry may adopt the proposed control chart when the FSW process was used to weld aluminum 
pieces in a manufacturing process, which is a feasible alternative.

5. Conclusions
The automotive industry is searching for materials that allow it to obtain significant advantages; aluminum 

is used in automotive industries, representing a feasible alternative. Welding processes used in the industry affect 
the mechanical properties and quality of welded joints; FSW is the proposed process since it is an advanced solid 
state welding process.
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The AWS standard states that visual inspection on destructive testing and X-ray examination must be used 
to identify internal defects, therefore a multi-attribute control chart has to be used to monitor the FSW process 
considering categorical quality characteristics.

Multi-attribute control charts require bigger sample sizes (due to asymptotical assumptions) for obtaining a 
good performance, which is not suitable for the FSW process since a destructive test inspection is used. Hence, in 
this study the 2D  multi-attribute control chart is used to assess the local FSW process, modifying the limit control 
in order to improve the efficiency and lessen the small sample sizes effect. An empirical control limit is proposed 
by using a Monte Carlo simulation, moreover the performance of the 2D  chart with different sample sizes ( n 30≤ ) 
was studied and compared with the performance of the conventional chart.

The results suggest that the conventional 2D  chart is deficient when  n 30≤ , and therefore cannot be used 
to monitor the FSW process because it can lead into wrong conclusions about the state of the process. However, 
through the use of empirical control limits the enhancement of the chart is achieved in these cases. The proposed 
approach is a suitable option for the studied process as for similar ones, when small sample sizes are required or 
when it is necessary to reduce inspection costs.

It is important to highlight that designs showed in Table 2 are suitable for k 4=  categories. However, by 
following the described procedure in Section 3, it is possible to design empirical 2D  control charts for any categories 
(defects) k 2≥ .

Deeming the results, the proposed empirical 2D  control chart can be implemented at the production line 
to monitor the FSW process with the considered characteristics, considering the advantages of the FSW process 
over the joints’ mechanical properties. In this sense, the empirical 2D  control chart is useful for the automotive 
industry when a FSW process was used to weld aluminum pieces, which is a feasible alternative.

Also for improving the proposed chart performance, it is possible to weight the more severe defects. In that 
way, if this defects occur then chart can signals an out of control state, immediately. Furthermore, it is necessary 
to investigate a method to identify the attributes that will more probably induce an out-of-control signal, as well 
as the use of a method for calculating a process capability index, which represents an opportunity of research.
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