CORPORACIÓN MEXICANA DE INVESTIGACIÓN EN MATERIALES DIVISIÓN DE ESTUDIOS DE POSGRADO

EFECTO DEL DESPLAZAMIENTO DEL ELECTRODO EN SOLDADURA CIRCUNFERENCIAL POR ARCO SUMERGIDO, EN TUBERÍA DE ACERO API-5L-X70

POR

OSCAR PADRÓN DOMÍNGUEZ

REPORTE DE PROYECTO

EN OPCIÓN COMO ESPECIALISTA
EN TECNOLOGÍA DE LA SOLDADURA INDUSTRIAL

SALTILLO, COAHUILA A 11 DE DICIEMBRE DE 2017.

CORPORACIÓN MEXICANA DE INVESTIGACIÓN EN MATERIALES DIVISIÓN DE ESTUDIOS DE POSGRADO

EFECTO DEL DESPLAZAMIENTO DEL ELECTRODO EN SOLDADURA CIRCUNFERENCIAL POR ARCO SUMERGIDO, EN TUBERÍA DE ACERO API-5L-X70

POR OSCAR PADRÓN DOMÍNGUEZ

REPORTE DE PROYECTO

EN OPCIÓN COMO ESPECIALISTA
EN TECNOLOGÍA DE LA SOLDADURA INDUSTRIAL

SALTILLO, COAHUILA A 11 DE DICIEMBRE DE 2017.

Corporación Mexicana de Investigación en Materiales Gerencia de Desarrollo Humano División de Estudios de Posgrado

Los miembros del Comité Tutorial recomendamos que el reporte de proyecto "Efecto del desplazamiento del electrodo en soldadura circunferencial por arco sumergido, en tubería de acero API 5L X70", realizada por el alumno Oscar Padrón Domínguez, con número de matrícula 17ES-226 sea aceptado para su defensa como Especialista en Tecnología de la Soldadura Industrial.

El Comite	é Tutorial						
Dra. Rocío Salda Tutor Acad							
M.C. Gabriel García Cerecero	Dr. José Jorge Ruíz Mondragón						
Tutor en Planta	Co-Tutor Académico						
Dra. Gladys Y. Pérez Medina Asesor	Dr. Emmanuel José Gutierrez C. Asesor						
Vo.Bo	Vo.Bo.						
Dr. Pedro Pérez Villanueva							

Coordinador de Posgrado

Corporación Mexicana de Investigación en Materiales Gerencia de Desarrollo Humano División de Estudios de Posgrado

Los abajo firmantes, miembros del Jurado del Examen de especialización del alumno Oscar Padrón Domínguez, una vez leída y revisado el reporte de proyecto titulado "Efecto del desplazamiento del electrodo en soldadura circunferencial por arco sumergido, en tubería de acero API-5L-X70", aceptamos que el referido reporte de proyecto revisado y corregido, sea presentado por el alumno para aspirar al grado de Especialista en Tecnología de la Soldadura Industrial durante la defensa del reporte de proyecto correspondiente.

Y para que así conste firmamos la presente	a los 11 días de diciembre de 2017.
Dr. Felipe de Jesús García Vázquez	Dr. Fernando Macías López
Presidente	Secretario
Dra Rocio Saldañ	a Garcós

Vocal

AGRADECIMIENTOS

Agradezco a Dios por darme vida, llevarme de la mano durante este camino y por darme la oportunidad de superarme profesionalmente.

Agradezco a mis padres por siempre estar ahí cuidando y velando que llegue y me esfuerce en conseguir mis metas.

A mi esposa e hijas, por soportar el tiempo que estuvimos separados para seguir este sueño que hoy culmina como una realidad.

Agradezco a la Corporación Mexicana de Investigación en Materiales, S.A. de C.V., por la beca otorgada para llevar a cabo mí especialidad, además de todas las facilidades para el uso de sus equipos e instalaciones.

Agradezco al Consejo Nacional de Ciencia y Tecnología por la beca otorgada para realizar el posgrado.

Agradezco a Tubacero, S. de R.L. de C.V. por la confianza que depositaron en mí y en COMIMSA para llevar a cabo el proyecto, así como por los materiales y todas las facilidades prestadas para llevar a cabo la experimentación en sus instalaciones.

Agradezco a mis tutores, asesores, profesores y compañeros por todo el apoyo y el conocimiento que compartieron con un servidor durante este tiempo.

DEDICATORIA

A mí esposa e hijas, que son mi inspiración para esforzarme cada día en ser mejor persona.

A mis padres, ya que sus enseñanzas, consejos y sobre todo con su ejemplo, son de las razones que me tienen aquí.

A mis abuelos Melitón, Esther ya que son una inspiración de esfuerzo y el temple que uno debe tener en la vida.

A mis hermanos y sus familias ya que son parte muy importante en mi vida.

A mi abuela Lucia (QEPD) sé que desde donde esté cuida y guía mis pasos.

ÍNDICE GENERAL

SÍNTESIS		1
CAPÍTULO 1		3
INTRODUCC	CIÓN	3
1.1	Antecedentes	3
1.2	Objetivos	4
1.2.1	Objetivo general	4
1.2.2	Objetivos específicos	5
1.3	Planteamiento del problema	5
1.4	Justificación	6
1.5	Hipótesis	7
1.6	Aportación industrial	7
1.7	Alcance y delimitaciones	7
CAPÍTULO 2		<u>S</u>
MARCO TEĆ	PRICO	<u>S</u>
2.1	Historia breve de las tuberías y su aplicación actual	9
2.2	Métodos de fabricación de tuberías	11
2.2.1 eléctrica	Proceso de fabricación de tubería por soldadura por resiste 12	ncia
2.2.2	Proceso de fabricación de tubería UOE	13
2.2.3	Proceso de fabricación de tubería JCO	14
2.3	Proceso de soldadura por arco sumergido	14
2.3.1	Equipo para el proceso de soldadura por arco sumergido	15
2.3.2	Materiales del proceso de soldadura por arco sumergido	16
2.3.3	Variables del proceso SAW	18
2.3.4	Ventajas y desventajas del proceso por arco sumergido	18

2.3.5	Aplicación del proceso de arco sumergido en tuberías	19
2.4	Aceros para el desarrollo de tuberías	20
2.4.1	Acero API X70	20
2.4.1.1	Composición química	21
2.4.1.2	Propiedades Mecánicas	22
2.5	Geometría del cordón de soldadura	23
2.5.1 cordón d	Parámetros del proceso SAW que influyen en la geometrí e soldadura	
CAPÍTULO 3	}	34
DESARROLI	LO DEL PROYECTO	34
3.1	Metodología	34
3.2	Materiales	36
3.3	Procedimiento experimental	38
CAPÍTULO 4		44
RESULTADO	OS Y ANÁLISIS	44
4.1	Resultados	44
4.1.1	Cordones sobre la pared de la tubería	45
4.1.2	Cordones sobre ranura	48
4.2	Análisis	53
CAPÍTULO 5	;	56
CONCLUSIO	NES Y RECOMENDACIONES	56
5.1	Conclusiones	56
5.2	Recomendaciones	57
BIBLIOGRAF	=ÍA	59
ÍNDICE DE 1	TABLAS	62
ÍNDICE DE F	FIGURAS	63
Anexo 1		66
Anexo 2		67
Anexo 3		72

SÍNTESIS

La creciente demanda de hidrocarburos en el país ha traído consigo la necesidad de la construcción de nuevos ductos para el transporte de los mismos. Es por eso la necesidad de ductos con mayor resistencia a la presión interna, así como a la corrosión. Los materiales de alta resistencia baja aleación (HSLA, por sus siglas en inglés) cumplen con esta característica. Dentro de estos materiales se encuentran los aceros API en sus diferentes grados con los cuales se fabrican la mayor parte de las tuberías con las que se construyen los ductos en el mundo. Los procesos de fabricación más conocidos son el JCO, UOL y ERW, teniendo en común entre ellos un proceso de formado, ademas posterior a este les aplica soldadura por medio de arco sumergido (SAW, por sus siglas en inglés). Algunas veces para alcanzar mayores longitudes en las tuberías y reducir los trabajos en campo de uniones de tubería se realiza un proceso secundario, unir de 2 o más tubos para alcanzar la longitud de 24 metros, este proceso se lleva a cabo también por SAW. Este es utilizado debido a su alto depósito de soldadura, ya que puede llenar ranuras de un buen espesor en poco tiempo.

Dentro de las especificaciones solicitadas por los consumidores de la tubería se encuentran requerimientos de sanidad de soldadura, así como de geometría del cordón dependiendo directamente de los parámetros utilizados durante el proceso de unión. En la actualidad diversos autores han buscado modificar la geometría del cordón por medio de la modificación de los parámetros eléctricos, sin embargo, en Tubacero S. de R.L. han hecho el esfuerzo de tratar de reducir la convexidad del cordón por medio de estos sin obtener resultados deseados, es por eso que esta investigación propuso la modificación del parámetro del desplazamiento del electrodo en sentido transversal al eje de la tubería, con el fin de dar cumplimiento a la dimensión solicitada sin tener que retrabajar la soldadura para alcanzar la geometría especificada.

La metodología utilizada fue el realizar cordones de soldadura sobre la pared de la tubería a diferentes desplazamientos del electrodo, del mismo modo se aplicaron cordones múltiples (1,2 y 3 cordones) sobre una ranura entre 2 tubos a diferentes desplazamientos, con el fin de observar el efecto que se tiene en la geometría obtenida en el cordón.

Para esto se prepararon metalográficamente diversas muestras, se tomaron macrografías para dimensionar la penetración, la convexidad, el ancho del cordón y el ancho de la zona afectada por el calor (ZAC), además se realizaron microdurezas para conocer cambios en las propiedades del material por efecto del calor aportado en cada uno de los cordones.

Se encontró que el ancho del cordón y la convexidad crecen conforme se aumenta el desplazamiento del electrodo en forma transversal al eje de la tubería, cabe mencionar que esto sucede hasta llegar a un desplazamiento de 1.75 pulgadas, ya que después de este valor el desplazamiento del electrodo resulta excesivo creando una concavidad al centro del refuerzo. Por lo que se confirma que el desplazamiento del electrodo modifica la geometría del cordón.

Palabras clave: Geometría del cordón, SAW, Arco sumergido, Desplazamiento del

electrodo, API 5I X70.

Campo específico: Soldadura de ductos.

CAPÍTULO 1

INTRODUCCIÓN

1.1 Antecedentes

La creciente demanda de gas e hidrocarburos en el país ha propiciado la necesidad de fabricación de ductos que permitan soportar mayores presiones para el transporte de estos. Para su fabricación se utilizan materiales como aceros de alta resistencia y baja aleación (HSLA, por sus siglas en inglés) ya que cuentan con buenas propiedades mecánicas para esta aplicación.

Dentro de los materiales HSLA se encuentra el acero API 5L X70 con el cual están fabricadas las tuberías para conducción, éstos muestran propiedades superiores en resistencia a la cedencia, elevada tenacidad y alta resistencia a la corrosión con respecto a los aceros convencionales. Debido a lo anterior, la industria de fabricación de tubería en México se ha venido revolucionando y con ello empresas como Tubacero S. de R.L. de C.V., la cual es líder en el mercado de la fabricación de tubería (1).

Los tubos para cumplir con las distancias requieren ser ensamblados, una manera de hacerlo es por medio de soldadura circunferencial y debido a las cédulas grandes requeridas se emplea el proceso de soldadura por arco sumergido (SAW por sus siglas en inglés) para asegurar su correcto llenado, las uniones son evaluadas bajo los criterios de aceptación de la especificación API 1104 Welding of pipelines and related facilies 21st Edition.

1.2 Objetivos

1.2.1 Objetivo general

Analizar la relación entre la geometría del cordón de soldadura circunferencial por proceso SAW en aceros API 5L X70 y las posiciones de desfase del electrodo en dirección transversal a la tubería en la aplicación de soldadura en tuberías para conducción de hidrocarburos. Con el propósito de minimizar la altura del refuerzo, manteniendo la geometría de cordón deseada.

1.2.2 Objetivos específicos

- Recopilar y analizar el estado del arte del efecto del desplazamiento del electrodo en dirección transversal sobre la geometría del cordón de soldadura aplicado en componentes tubulares de forma circunferencial.
- Determinar el desplazamiento adecuado del electrodo para una tubería de 30 pulgadas de diámetro y 0.419 pulgadas de espesor, sin afectar la geometría del cordón de soldadura.
- Realizar y llevar a cabo un diseño de experimentos, aplicando un cordón de soldadura sobre la pared de la tubería, aplicando 1, 2 y 3 cordones sobre ranura, para dimensionar el efecto del desplazamiento del electrodo sobre la geometría del cordón, usando los desplazamientos de 1, 1.25, 1.5, 1.75 y 2 pulgadas.
- Evaluar y caracterizar los cordones de soldadura simple y múltiple mediante microscopía óptica (macro y micrografías) y pruebas mecánicas (dureza) para visualizar los cambios geométricos en el cordón de soldadura y analizar si presenta algún cambio microestructural y mecánico con la aplicación de pasos múltiples.

1.3 Planteamiento del problema

Se tiene conocimiento que las tuberías cuentan con una longitud específica por la complejidad de su fabricación, almacenaje y transportación. Sin embargo, para cumplir con las longitudes requeridas es necesario realizar ensambles entre tuberías y unirlas mediante soldadura. Cuando las cédulas de estos tubos son mayores a 0.188 pulgadas se recomienda usar procesos de soldadura como SAW, teniendo que cumplir con normativas de aplicación y geometría de los cordones.

Sin embargo, es recurrente que durante su fabricación promueven que se presente un excedente de forma dimensional en el refuerzo del cordón el cual tiene que ser retrabajado para poder cumplir con ello, trayendo consigo costos operativos y retraso en entrega.

Se tiene conocimiento de que existen una serie de variables que influyen en la geometría del cordón como amperaje, voltaje, velocidad de alambre, velocidad de desplazamiento, desplazamiento del electrodo, entre otras.

A pesar de los esfuerzos realizados previamente enfocados en la modificación de los parámetros eléctricos, no se ha podido tener un cambio significativo, por ello el presente trabajo propone estudiar el efecto del desplazamiento del electrodo en dirección transversal al tubo con el fin de modificar la geometría del cordón, usando el proceso de soldadura por arco sumergido en tubería API 5L X70 de 30 pulgadas de diámetro y 0.429 pulgadas de espesor.

1.4 Justificación

Tubacero, S. de R.L de C.V. fabrica tuberías en acero API 5L X70 que requieren ser ensambladas mediante soldadura por SAW de forma circunferencial. La especificación API 1104 Welding of pipelines and related facilities para este tipo de unión muestra un máximo de refuerzo de 1/16 pulgadas, bajo las condiciones de operación seleccionadas se excede, por lo que hay que realizar un retrabajo de desbaste en el área para cumplir con la geometría requerida, lo cual trae incremento en el costo de fabricación, así como retrasos en el tiempo de entrega debido a esta etapa. Se han revisado los parámetros eléctricos del proceso para obtener algún cambio, sin embargo, no se ha obtenido buenos resultados.

Se ha realizado una búsqueda de los factores que afectan la geometría del cordón, uno que no ha sido considerado es el efecto que produce el desplazamiento del electrodo, y no ha sido analizado su efecto sobre la geometría del cordón. Esta investigación considerará el análisis de dicho desplazamiento con el objetivo de modificar la geometría del cordón y obtener un cordón de soldadura que se encuentre dentro de las especificaciones requeridas sin realizar retrabajos posteriores o minimizándolos.

1.5 Hipótesis

La geometría de la soldadura circunferencial por el proceso SAW en material API 5L X70, se verá modificada al variar el desplazamiento del electrodo, promoviendo tener ensambles con la geometría requerida por la especificación API 1104 Welding of pipelines and related facilities.

1.6 Aportación industrial

Dar a conocer la relación entre el comportamiento de la geometría del cordón de soldadura y el desplazamiento del electrodo en soldaduras circunferenciales por el proceso SAW, con el fin de disminuir los retrabajos, así como el costo de producción de la tubería y mejorar en los tiempos de entrega.

1.7 Alcance y delimitaciones

 El presente estudio se realizará en tubería API 5L X70 de 30 pulgadas de diámetro con 0.429 pulgadas de espesor de pared.

- Los parámetros de soldadura amperaje, voltaje y velocidad de giro, serán constantes para cada uno de los desplazamientos y dentro del rango estipulado por el procedimiento de soldadura calificado, especificado por Tubacero, S. de R.L. de C.V.
- Los desplazamientos utilizados fueron 1, 1.25, 1.5, 1.75 y 2 pulgadas en dirección transversal al eje de la tubería.
- La geometría del cordón que se analizará será la exterior, por lo cual no se medirá la geometría del cordón interior.

CAPÍTULO 2

MARCO TEÓRICO

2.1 Historia breve de las tuberías y su aplicación actual

El uso de tuberías en el mundo tiene una larga historia, pero un hecho trascendental ocurrió en el siglo XVIII cuando se comenzaron a fabricar tubos de hierro fundido para ser usados en la construcción de líneas de agua, drenajes y ductos de gas. Posterior a esto, en el siglo XIX se inició con la fabricación de tuberías de acero, con esto se incrementó la resistencia de las tuberías en todas las medidas. En 1879 se descubre petróleo en Pennsylvania, siendo el primer

ducto construido de gran longitud en este estado, con un tamaño nominal de 6 pulgadas de diámetro, 109 millas de longitud de tubería de acero. Nueve años más tarde es construido un ducto de 8 pulgadas de diámetro y 87 millas de longitud para transportar gas natural de Kane hacia Pennsylvania y Búfalo (2).

Los desarrollos de las tuberías de alta resistencia hicieron posible transportar diferentes fluidos como lo son el gas natural, el petróleo crudo y sus derivados estos últimos conocidos como poliductos a grandes distancias. Inicialmente todas las tuberías tenían que ser roscadas la hermeticidad de estas, cuando se trataba de tuberías muy largas, fugaban por la alta presión. El desarrollo de la soldadura por arco eléctrico para unir las tuberías llevado a cabo durante la década 1920s que hizo posible construir tuberías de grandes diámetros y que soportaran grandes presiones, otro hito alcanzado en esta década fue la fabricación de tubería sin costura (2).

La innovación tecnológica en la fabricación de tubería fue en la década de los 1950s, de las cuales a continuación se mencionan las que se consideran más importantes:

- Introducción de nuevos materiales como los son tuberías de hierro dúctil, concreto y PVC.
- El uso de diablos para la limpieza interior de los ductos para utilizarse con otros fluidos.
- Dosificación de varios productos petrolíferos en un mismo ducto.
- Aplicación de protección catódica para reducir a corrosión y extender la vida útil del ducto.
- El uso de tractores pluma, máquinas de cruce direccional, dobladoras de tubería y los rayos X para detectar discontinuidades en la soldadura.

Hoy en día un elevado porcentaje de las tuberías de alta presión son de aceros de alta resistencia y baja aleación (HSLA, por sus siglas en inglés) con juntas soldadas (2).

2.2 Métodos de fabricación de tuberías

El acero al carbono es el material más usado para la fabricación de tuberías para ductos tanto en tierra como en mar. Durante los últimos 30 años se han convertido en una disciplina tecnológica de vanguardia, la producción de tubería para línea y de perforación de pozos asciende a varios miles de millones de dólares por año, mientras que las compañías que los fabrican se encuentran extendidas por todo el mundo (1).

Los requerimientos en cuanto a propiedades mecánicas de la tubería, varía de acuerdo con la aplicación de la misma. Los requerimientos para las tuberías de acero cada vez son más rigurosos, suelen requerir propiedades altas en resistencia, ductilidad, tenacidad, resistencia a la corrosión y buena soldabilidad y para el caso de las tuberías para costa fuera se emplean espesores gruesos para evitar el colapso por la presión externa. Estos requisitos hacen que su proceso sea cuidadosamente cauteloso en el control de las aleaciones y el proceso termomecánico durante la fabricación, dando como resultado que cada tramo de tubería sea monitoreado paso a paso durante todo el proceso de fabricación (1).

Estos tramos de tubería deben ser examinados por pruebas no destructivas por métodos superficiales, subsuperficiales y volumétricas como lo son, el ultrasonido industrial, partículas magnéticas y radiografía por medio de rayos X, esto para encontrar discontinuidades en espesores robustos y para detectar defectos en la soldadura. Aunado de pruebas mecánicas una vez terminados los tubos incluyendo el ensayo de tensión. Las pruebas charpy y otras pruebas pueden ser solicitadas como adicionales por el comprador de la misma tubería y de acuerdo con las necesidades de cada proyecto (1).

Las tuberías para transporte de hidrocarburos pueden ser con o sin costura soldada, las tuberías sin costura son usualmente de 16 pulgadas de diámetro exterior y menores. Las tuberías con costura soldada son formadas en

frío desde una placa desde un proceso UOE o JCO, encontrándose disponible desde 16 pulgadas hasta 64 pulgadas de diámetro. Otro proceso conocido es el de tubería con soldadura por resistencia eléctrica (ERW, por sus siglas en inglés), el cual es un proceso continuo desde un rollo de placa rolada y el cual está disponible desde 2.375 pulgadas hasta 24 pulgadas de diámetro. El quinto método de fabricación de tubería es el de formado de placa con soldadura helicoidal (1).

A continuación, se explican más a detalle los procesos de fabricación de tuberías, debido a la necesidad de conocer esta información y entender cada uno de los procesos (1).

2.2.1 Proceso de fabricación de tubería por soldadura por resistencia eléctrica

Este proceso inicia con un largo rollo de placa de acero, la cual es formada en una forma circular cerrada, donde la costura de soldadura se realiza por medio del proceso ERW. Este proceso se usa para mantener la geometría y alineación del tubo, cabe mencionar que una vez que está formado se debe terminar la soldadura longitudinal con el proceso SAW, y después debe ser expandido para darle la concentricidad dentro de los límites establecidos por la normatividad de fabricación, en la Figura 2.1 se puede ver de manera esquemática este proceso (1).

Figura 2.1 Esquema del proceso de manufactura de tuberías ERW (1).

2.2.2 Proceso de fabricación de tubería UOE

En este proceso la tubería es formada en un molde en forma de O, siguiendo los 4 pasos que se pueden observar en la Figura 2.2 y que a continuación se describen de manera breve. Los bordes de la placa se doblan de manera circular, la placa es formada en un molde tipo U y es presionada en forma de U, la placa es formada en un molde tipo O y presionada de la misma manera en forma de O, la costura es soldada por medio de SAW y por último la soldadura es expandida para darle uniformidad a la circunferencia (1).

Figura 2.2 Esquema del proceso de manufactura de tuberías UOE (1).

2.2.3 Proceso de fabricación de tubería JCO

Este proceso es similar al anterior y se puede observar esquemáticamente en la Figura 2.3, con la diferencia que en este caso, los moldes U y O son reemplazados por moldes con formas J y C, utilizando el mismo principio anteriormente visto, la costura es soldada por medio de SAW y al final es expandida para dar una circunferencia uniforme y con la redondez deseada (1).

Como se explicó en párrafos anteriores, el principal proceso de soldadura utilizado para las tuberías de costura es el SAW siendo un proceso de soldadura por arco (1).

Figura 2.3 Esquema del proceso de manufactura de tuberías JCO (1).

2.3 Proceso de soldadura por arco sumergido

El proceso de soldadura por arco sumergido, SAW, se puede llevar a cabo por uno o más arcos y por uno o más electrodos, además de utilizar fundente granular, la alimentación del alambre y la longitud de arco están

contraladas por el alimentador de alambre y la máquina de soldar. En la Figura 2.4 se muestra un esquema representativo de este proceso (3) (4).

Figura 2.4 Esquema del proceso de soldadura por arco sumergido (3).

2.3.1 Equipo para el proceso de soldadura por arco sumergido

El equipo para realizar la soldadura por arco sumergido se integra por lo siguientes componentes (ver Figura 2.5) (3) (4):

- Máquina de soldar o fuente de poder. Es la unidad que genera y regula la energía con la cual se produce el corto circuito.
- Sistema de control. Sirve para colocar los parámetros con los cuales se controlará el proceso de soldadura.
- Alimentador de alambre. En esta unidad se coloca el alambre que se utilizará para soldar, y este varía la longitud del arco y la velocidad de avance.

- Tolva y Alimentador de fundente. La función de esta unidad es proveer de fundente la pieza a unir.
- Antorcha. Es el medio por el cual se provoca el arco y a través de esta pasa el alambre antes de ser depositado en la unión.

Figura 2.5 Equipo para soldadura por arco sumergido (3).

2.3.2 Materiales del proceso de soldadura por arco sumergido

Dentro de los materiales que se requieren como parte del proceso de soldadura por arco sumergido se encuentran lo que a continuación se enlistan (3) (4):

- Alambre de aporte, este debe tener las características parecidas o iguales al material a soldar.
- Fundente, para el caso de este proceso es el fundente el que le da muchas de las propiedades a la soldadura.

El alambre y el fundente cuentan con su designación con la cual son distinguidos unos de otros. En la Figura 2.6, se indica la designación de los materiales de aporte para este proceso:

DESIGNACIÓN DE CLASIFICACIÓN MANDATORIA La letra "F" indica que es un fundente de arco sumergido. La letra "S" cuando aparece antes de "F" es parte de la clasificación designada cuando el fundente está clasificado como escoria aplastada o mezcla de escoria aplastada y fundente virgen. Indica el mínimo esfuerzo a la tensión (en incrementos de 10,000psi) del metal de soldadura depositado con el fundente y algunas clasificaciones de aportes bajo las condiciones de soldadura especificadas en la figura 5 y en la tabla 7. uno o dos dígitos pueden ser usados dependiendo del nivel de esfuerzo, como es indicado en la tabla 1. La "T" al final de la identificación de la designación en la clasificación a la tensión. Por ejemplo, cuando el designador es "7T", la clasificación del requerimiento de tensión es 70,000psi mínimo. Cuando el designador es "10T", la tensión mínima es 100,000psi mínimo. Designa la condición de tratamiento térmico en el cual la prueba fue conducida. "A" como fue soldado y "P" para tratamiento térmico. El tratamiento térmico después de la soldadura debe ser de acuerdo al procedimiento especificado en el punto 9.5 Indica la temperatura en °F a la que debe estar sometida la soldadura cuando se le hagan pruebas de impacto, refiere que esta no debe exceder 20ft-lbf. Dos dígitos son usados para temperaturas debajo de -100 °F o menor (ver tabla 2). La letra "G" cuando aparece en esta posición , indica que el metal base usado por la clasificación no es una de los metales base prescitos en la tabla 8 pero es un acero diferente agregado en la orden de compra entre el cliente y el vendedor. Clasificación del electrodo usada en la producción del metal referido encima. La letra "E" es la parte de la clasificación del electrodo cuando el electrodo es una composito. Refiere a la tabla 4 para la clasificación de electrodo sólido y en la tabla 3 para clasificación de electrodo composito. $F\overline{X}TXXG - \overline{EXX} - HX$

Figura 2.6 Designación de materiales de aporte para soldadura por arco sumergido (5).

DESIGNACIÓN OPCIONAL SUPLEMENTARIA

Designación para un suplemento opcional es la difusión de hidrogeno (ver tabla 10).

Para realizar las soldaduras del presente trabajo se utilizó un material de aporte F8A2-EA4-A4 del cual se muestra su composición química en la Tabla 2.1 y sus propiedades mecánicas en la Tabla 2.2.

Tabla 2.1 Composición química del aporte (5).

% e.p.	C	Si	Mn	P	s	V	Nb	Ti	Otros
APORTE									Mo 0.4 - 0.60
AFORTE	0.12	0.8	1.6	0.030	0.030	No espec.	No espec.	No espec.	Cu 0.35

Tabla 2.2 Propiedades mecánicas del aporte (5).

Especificación	Clasificación	Esfuerzo de Cedencia (MPa)	Esfuerzo Máximo (Mpa)
A5.23	F8A2-EA4-A4	540	550-770

2.3.3 Variables del proceso SAW

En el proceso de soldadura por medio de arco sumergido existen variables que pueden modificar o alterar la geometría y/o sanidad de la soldadura, a continuación, se enlistan las principales (3) (4):

- Amperaje.
- Voltaje.
- Velocidad de avance.
- Longitud del arco.
- Desplazamiento del electrodo (para soldaduras circunferenciales).

2.3.4 Ventajas y desventajas del proceso por arco sumergido

Este proceso, al igual que todos los demás, posee una serie de ventajas y desventajas, las cuales se deben de considerar al realizar una soldadura (3) (4).

Ventajas:

- Alta penetración de la soldadura.
- Alta deposición de soldadura.
- Poca intervención del soldador (se le considera operador).
- Produce pocos humos.
- La chispa del arco no está visible.

Desventajas:

- Se requiere de una limpieza extenuante en la unión a soldar.
- Se debe alinear muy bien la junta y la antorcha.
- Solo se puede utilizar en posición plana.

2.3.5 Aplicación del proceso de arco sumergido en tuberías

Debido a que este proceso tiene una alta deposición de soldadura es muy usado en la fabricación de tuberías, ya que tiene un gran avance en comparación de otros procesos, requiere de menor mano de obra ya que produce escoria, pero esta se va desprendiendo por si misma al enfriarse (si los parámetros de soldadura son los correctos), casi no produce defectos, por lo cual es el proceso más recomendado para este tipo de trabajos (1).

2.4 Aceros para el desarrollo de tuberías

En la mayor parte del mundo las tuberías son fabricadas conforme a la especificación API 5L (ISO 3183) la cual cubre tuberías con costura longitudinal y helicoidal soldada, además de la composición de material API 5L. Esta última se divide de acuerdo con su servicio en PSL1 para servicios no amargos y PSL2 para servicios amargos (1).

2.4.1 Acero API X70

Los aceros HSLA, son aquellos que tienen bajos contenidos de carbono y no más de 0.2% de elementos aleantes que propician la formación de carburos, nitruros y carbonitruros a fin de tener una mejor resistencia (1).

Estos aceros se utilizan para proveer propiedades mecánicas optimizadas, ya sea para la fabricación de componentes para un servicio específico o de un componente que requiera mejores propiedades (1).

Los aceros del instituto americano del petróleo (API, por sus siglas en inglés) son aceros HSLA y son utilizados en la fabricación de tuberías para la conducción de hidrocarburos. Para su fabricación se debe de cumplir con los requisitos estipulados en la norma API 5L la cual es una especificación para tuberías de línea (1).

El grado de la tubería es determinada por su esfuerzo a la cedencia, por ejemplo, una tubería grado X70, su esfuerzo a la cedencia es de 70,000 psi (6).

El material API 5L X70 posee excelentes propiedades tanto químicas como mecánicas, lo que hace que soporten grandes presiones en su interior,

debido a esto, son comúnmente empleados en la construcción de ductos para transportar hidrocarburos y/o sus derivados (1).

2.4.1.1 Composición química

El material API X70 cuenta con una composición química Fe-C enriquecida con Mn para mejorar su resistencia y dureza, y Nb para la refinación de granos. En la Tabla 2.3, se observan los rangos de concentración de cada uno de los elementos aleantes para cumplir con la especificación API 5L Specification for line pipe (6).

Tabla 2.3 Composición química del acero API 5L X70 (% e.p.) (6).

% e.p.	C	Si	Mn	P	S	V	Nb	Ti	Otros				
X70	0.12	0.45	1.7	0.025	0.015	(a)	(a)	(a)	(b)				
Notas:	(a) La suma de V, Nb, Ti no deberá exceder 0.15%.												
	(b) Los elemei	ntos Cu, Ni, Cr y M) Los elementos Cu, Ni, Cr y Mo deden tener máximo 0.50%.										

En la Tabla 2.4 se describe el cómo influyen cada uno de los elementos químicos y que propiedad mecánica afecta.

Tabla 2.4 Efectos que generan los elementos químicos en tuberías (7).

Elemento químico (% e.p.)	Efectos que genera en aceros para tuberías.
C: 0.03 – 0.10	Promueve el endurecimiento de la matriz del material (carburos y carbonitruros).
Mn: 1.6 – 2.0	Retarda la formacion austenita-ferrita durante el enfriamiento.
Si: > 0.6	Consolida la matriz metálica en la solución sólida.
Nb: 0.03-0.06	Reduce el rango de temperatura en el que es posible la recristalización durante el proceso de laminado. Inhibe el proceso de recristalización y la tendencia de crecimiento del grano austenítico (mejorando la resistencia mecánica y la tenacidad por el acabado del grano).
Ti: 0.005 – 0.03	Refina el tamaño de los granos bloqueando la tendencia de crecimiento del grano austenítico debido a la formación de TiN, fortalece fuertemente el grano de ferrita. Fija el níquel y prevención del efecto perjudicial del Ni sobre la templabilidad.
Ni: 0.2 – 1.0	Mejora las propiedades de los aceros de bajo carbono sin afectar la soldabilidad y dureza a bajas temperaturas en contraste con Mg y Mo, tiene una tendencia a formar un acero menos duro y quebradizo. Sus componentes microestructurales a bajas temperaturas, aumentan la tenacidad.
V: 0.03 – 0.08	Proporciona consolidación por precipitación durante el tratamiento térmico. Refuerza fuertemente la ferrita.
Mo: 0.2 – 0.6	Mejora la templabilidad Promueve la formación benéfica de bainita inferior fina.

2.4.1.2 Propiedades Mecánicas

El material API 5L X70 cuenta con unas excelentes propiedades mecánicas (alta resistencia y tenacidad), su bajo contenido de carbono (buena soldabilidad) y sus bajas temperaturas de transición (dúctil-frágil) lo hace un material ideal para aplicarlo en la construcción de ductos, en la Tabla 2.5 y Tabla 2.6 se muestran las propiedades mecánicas de la tubería grado X70 PSL1 y 2 en base a la especificación API 5L Specification for line pipe.

Tabla 2.5 Propiedades mecánicas de los aceros API 5L X70 PSL 1 (6).

Fanasifiaasián	Cuada	Resistencia a la tensión		Límite	Flammatión	
Especificación	Grado	Mpa	psi	Мра	psi	Elongación
API 5L	X70	565	82000	483	70000	2in (50.8mm)

Tabla 2.6 Propiedades mecánicas de los aceros API 5L X70 PSL 2 (6).

E	Especificación	Grado	Resistencia mínima a la tensión		Resistencia máxima a la tensión		Límite (Límite elástico	
			Мра	psi	Мра	psi	Мра	psi	
	API 5L	X70	565	82000	758	110000	483	70000	2in (50.8mm)

2.5 Geometría del cordón de soldadura

La geometría del cordón de soldadura está definida por la altura, ancho y la penetración del refuerzo, estas variables se ven modificadas por el cambio de un parámetro del proceso de unión, o la combinación de varios parámetros del mismo.

2.5.1 Parámetros del proceso SAW que influyen en la geometría del cordón de soldadura

Los parámetros del proceso SAW que modifican la geometría del cordón de soldadura son: la polaridad del aporte, amperaje, voltaje, velocidad de avance, diámetro del electrodo, ángulo del aporte y desplazamiento del electrodo. Dependiendo de la combinación de variables es el efecto que se va a tener en la geometría del cordón de soldadura (4) (8).

a) Polaridad del aporte

La polaridad del aporte produce cambios en la penetración de la soldadura, como se observa en el extremo izquierdo de la Figura 2.7. Cuando el aporte tiene una polaridad positiva, se tiene una mayor penetración y un menor ancho de cordón. En el extremo derecho de la Figura 2.7 se observa lo contrario, esto se presenta cuando se tiene polaridad negativa. En el centro de la Figura

2.7 se muestra que cuando se utiliza la corriente alterna, el ancho del cordón se comporta muy parecido a lo que se observa con la polaridad negativa, pero con una mayor penetración. La tasa de fusión se incrementa aproximadamente un 30% cuando la polaridad es negativa (8).

Figura 2.7 Efecto de la polaridad en la geometría del cordón de soldadura (8).

Diversos autores (9) (10) (11) (12) (13) en los últimos años han desarrollado modelos matemáticos con el fin de predecir el comportamiento de la geometría del cordón, coincidiendo con el efecto que tiene la polaridad en la geometría del mismo, es decir, cuando se tiene el electrodo al positivo se obtiene una mayor penetración y el cordón es más estrecho, contrario a lo que sucede cuando el electrodo se coloca al negativo donde el ancho del cordón es mayor y la penetración es somera. En el caso de la polaridad alterna se conjugan los efectos de electrodo y negativo ya que la polaridad es oscilante entre el positivo y el negativo.

b) Amperaje de soldadura

Se considera la variable que más influye en el proceso debido a que controla la velocidad con la que se funde el aporte, es decir, controla la tasa de deposición de soldadura, la profundidad de penetración y la cantidad de material fundido. En la Figura 2.8, de izquierda a derecha, se observa que conforme se aumenta la corriente a una velocidad de desplazamiento constante, la profundidad de fusión o penetración irá incrementando, cabe mencionar que esto podría propiciar un desperdicio de material de aporte debido a que hará un mayor

refuerzo de soldadura, lo cual trae consigo un incremento en la contracción de esta y causa mayores distorsiones (8).

En el caso contrario si el amperaje es pobre, el resultado puede ser una penetración baja, por lo cual se corre el riesgo de que sea insuficiente o con una fusión incompleta (8).

Figura 2.8 Efecto del amperaje en la geometría del cordón de soldadura (8).

Se pueden deducir 3 reglas que consideran el amperaje en la soldadura:

- Con el incremento del amperaje aumenta la penetración y la tasa de fusión.
- Un amperaje demasiado alto produce arco excavador y socavamiento, o un refuerzo muy alto y angosto.
- Un amperaje demasiado bajo produce un arco inestable.

De las últimas investigaciones llevadas a cabo por algunos autores (13) (14) (15) (16) (17) concuerdan que conforme se incrementa el amperaje se incrementa tanto la penetración como el ancho del cordón de soldadura.

c) Voltaje de soldadura

Su ajuste hace variar la longitud del arco entre el electrodo y el charco de la soldadura. Se incrementa el voltaje, la longitud del arco incrementará, en cambio si el voltaje de disminuye, el arco se hará más corto (8).

En la Figura 2.9 de izquierda a derecha se observa que conforme se incrementa el voltaje se ensancha el cordón de soldadura, sin embargo la penetración disminuye ligeramente, ya que la tasa de deposición del electrodo se ve afectada, pero la penetración depende más bien del amperaje, algo que sí determina es la forma de la sección transversal del cordón de soldadura y el aspecto externo de esta última (8).

Figura 2.9 Efecto del voltaje en la geometría del cordón de soldadura (8).

Las consecuencias de incrementar el voltaje manteniendo constantes el amperaje y la velocidad de desplazamiento son (8):

- Un cordón de soldadura con un refuerzo menos convexo y más ancho.
- Mayor consumo de fundente.
- Disminuirá el índice de porosidad.
- Se puede soldar con una abertura de raíz excesiva cuando la preparación de la junta a unirse es deficiente.
- Mayor absorción de elementos de aleación de un fundente.

Las consecuencias de un voltaje de arco excesivo son (8):

- Refuerzo de soldadura más ancho y cóncavo propenso al agrietamiento.
- Problemas para eliminar la escoria en las soldaduras de ranura.
- Mayor socavamiento en los bordes de las soldaduras de filete.

Si se reduce el voltaje se obtiene un arco más estable, con lo cual se mejora la penetración en las ranuras profundas y se reduce la tendencia del golpe de arco. Un voltaje demasiado bajo produce un refuerzo de soldadura alto y angosto que dificulta la eliminación de escoria a lo largo de sus bordes (8).

En los trabajos llevados a cabo en los últimos años respecto del voltaje y su influencia con la geometría del cordón, algunos autores (10) (14) (15) (16) (18), coinciden en concluir que conforme se incrementa el voltaje, el ancho del cordón se incrementa y la penetración disminuye levemente.

d) Velocidad de avance

Para cualquier combinación de amperaje y voltaje en una soldadura, existe una velocidad de desplazamiento adecuada para que los efectos sean los deseados. En la Figura 2.10 se puede observar que conforme se aumenta la velocidad de avance, se reduce el aporte de potencia o calor por unidad de longitud de la soldadura y se deposita menor cantidad de metal de aporte, con lo que se reduce el ancho del refuerzo, el refuerzo de la soldadura se hace menos convexo y la penetración disminuye (8).

Figura 2.10 Efecto de la velocidad de avance en la geometría de la soldadura, con el amperaje y voltaje constantes (8).

La penetración de la soldadura depende más de la velocidad de desplazamiento que por otra variable excepto que el amperaje. Esto no sucede a velocidades excesivamente bajas cuando el charco de soldadura queda debajo del electrodo. En este caso, la fuerza de penetración del arco es amortiguada por el metal fundido. Una velocidad excesiva puede causar socavamiento (8).

Dentro de ciertos límites, la velocidad de avance puede ajustarse para controlar el tamaño y la penetración de la soldadura. En este sentido, está relacionada con el amperaje y el tipo de fundente. Una velocidad de desplazamiento excesiva promueve el socavamiento, el golpe de arco, la porosidad y crea un refuerzo de la soldadura irregular. Si la velocidad de avance es relativamente baja, los gases tienen tiempo de escapar del metal fundido y se reduce la porosidad. Una velocidad de avance demasiado alta produce un cordón de soldadura convexo propenso al agrietamiento, una exposición excesiva del arco, lo que resulta molesto para el operador, un charco de soldadura grande que fluye alrededor del arco y produce un cordón de soldadura irregular y con inclusiones de escoria (8).

Otros estudios llevados a cabo por diferentes autores (14) (19) (15) (16) (17) coinciden en sus conclusiones al decir que, conforme se incrementa la velocidad de avance se reduce el ancho del cordón y la penetración del mismo.

e) Diámetro del aporte

El diámetro del material de aporte tiene una influencia directa en la geometría del cordón ya que de esto depende el área donde se producirá el arco eléctrico. En el lado derecho de la Figura 2.11 se observa que cuando se utiliza un diámetro de aporte pequeño, la penetración de la soldadura aumenta en comparación con lo que se observa en el lado izquierdo donde se utiliza un aporte de mayor diámetro. Para una corriente dada, la estabilidad del arco es mejor con un alambre más delgado, debido a una mayor densidad de corriente. Por otro lado, un alambre de relleno más grueso con una baja corriente de soldadura puede fácilmente unir una junta ancha (8).

Figura 2.11 Efectos del cambio de diámetro del aporte en la geometría del cordón de soldadura **(8)**.

En los últimos años se han llevado a cabo trabajo de investigación donde se relaciona el diámetro del electrodo con la geometría del cordón obtenida, coincidiendo el autor (9) que conforme se incrementa el diámetro del electrodo el cordón es más ancho y con menor penetración, contrario a lo que sucede cuando se tiene un diámetro menor donde se tendrá mayor penetración y un cordón menos ancho.

f) Ángulo del aporte

El ángulo del aporte a la junta tiene un efecto considerable en la geometría y penetración de la soldadura. En el inciso c de la Figura 2.12 se pueden observar algunos casos; la soldadura de empuje da un refuerzo de soldadura más ancho que puede contrarrestar la tendencia a producir una soldadura alta, es decir, con poca convexidad y así permitir que se use una velocidad de soldadura más elevada. Caso contrario a lo que se observa en el inciso a de la Figura 2.12 donde se tiene una soldadura de arrastre y esta dará una mayor penetración y un refuerzo más convexo, cabe mencionar que si se utiliza el electrodo perpendicular a la superficie, el efecto que se obtendrá será un cordón con buena penetración y un ancho de cordón más uniforme, lo cual se muestra en el inciso b de la ilustración Figura 2.12 (8).

Figura 2.12 Efectos del cambio de ángulo del aporte en la geometría del cordón de soldadura **(8)**.

g) Desplazamiento del electrodo

Las soldaduras circunferenciales difieren de las que se hacen en la posición plana en virtud de la tendencia que tienen el metal de soldadura y el fundente fundidos a fluir y alejarse del arco. A fin de evitar un derramamiento y la distorsión de la geometría del cordón de soldadura, las soldaduras deben

solidificarse al pasar por los puntos que corresponden a las 12 y a las 6 simulando la carátula de un reloj. En la Figura 2.13 se ilustran los perfiles de franja que resultan de las diversas posiciones de electrodo con respecto a las posiciones de electrodo con respecto a las posiciones de las 12 y las 6 (4).

Figura 2.13 Efecto del desplazamiento del cordón de soldadura en la geometría del cordón de soldadura **(4)**.

En el inciso b de la Figura 2.13 se muestra un desplazamiento angular insuficiente en una soldadura exterior, o excesivo en una soldadura interior, la penetración será profunda y el ancho del refuerzo será angosto y muy convexo; además, puede haber socavamiento. En el inciso c de la misma figura se observa un desplazamiento excesivo en una soldadura exterior o un desplazamiento insuficiente en una soldadura interior que produce un refuerzo somero y cóncavo, el fundente granular no podrá sostenerse sobre la pieza de trabajo de diámetro pequeño si no se le contiene (4).

Sea cual sea la posición del electrodo, si el charco fundido es demasiado grande para el diámetro del trabajo, el metal de soldadura líquido se derramará por la sencilla razón que no puede solidificarse con la suficiente rapidez (4).

h) Principios del cambio de posición del electrodo

La soldadura por el proceso SAW se utiliza en posición plana, esto debido a que el fundente es granular y en cualquier otra posición se derramaría o no se sostendría sobre la superficie a soldar, cabe mencionar que, conociendo las diferentes posiciones de soldadura, la posición plana puede tener una variación de algunos grados para seguir siendo considerada como plana (4).

La inclinación de la pieza de trabajo durante la aplicación de soldadura por el proceso SAW puede afectar la geometría del cordón. En la Figura 2.14 se muestran los diferentes tipos o variaciones que se obtienen en la geometría del cordón, de acuerdo con el ángulo de inclinación y el efecto que crea en el electrodo (4).

En el inciso B de la Figura 2.14 se observa la soldadura en la que se tiene un efecto de cuesta abajo, el charco tiende a fluir por debajo del arco y precalentar el metal base sobre todo en la superficie. Esto produce una zona de fusión de forma irregular, conforme se incrementa el ángulo de inclinación la parte media de la soldadura adquiere una depresión, la penetración se reduce y la franja se hace más ancha (4).

En el inciso C se ve el caso contrario cuando la soldadura tiene un efecto cuesta arriba, modifica el perfil de la zona de fusión. La fuerza de gravedad hace que el charco de soldadura fluya hacia atrás y se retrase con respecto al electrodo. Los bordes del metal base se funden y fluyen hacia la parte media. Conforme se aumenta el ángulo de inclinación se incrementa el refuerzo y la penetración y la acumulación en el centro (4).

El ángulo de inclinación limitante cuando se suelda cuesta arriba con corrientes de hasta 800A es de 6 grados, o una pendiente de 1 a 10, si se emplean corrientes de soldadura más elevadas se reduce el ángulo práctico

máximo. Una inclinación mayor que 6 grados puede hacer que se pierda el control de la soldadura (4).

En el inciso D se muestran los efectos de la inclinación lateral de la pieza de trabajo. El límite de la pendiente lateral es de 3 grados, o de 1 a 20 (4).

Figura 2.14 Efecto de la inclinación de la pieza de trabajo sobre la geometría del cordón de soldadura **(4)**.

CAPÍTULO 3

DESARROLLO DEL PROYECTO

3.1 Metodología

La metodología realizada en el presente trabajo inició con la revisión de la literatura existente respecto al desplazamiento del cordón y el efecto que esta variable causa a la geometría del cordón de soldadura, además de conocer el estado del arte del proceso SAW y de los parámetros que influencian la geometría del cordón de soldadura.

Una vez obtenido lo anterior, se continuó con el análisis microestructural y medición de dureza del metal base, para obtener los valores iniciales y compararlos al final con las probetas unidas por SAW.

El desarrollo de la experimentación se llevó a cabo en 2 etapas, en la primera de ellas se realizaron cordones simples de soldadura de filete sobre la pared de la tubería, utilizando el proceso SAW en un material API X70 modificando el desplazamiento del electrodo a 1, 1.25, 1.5, 1.75 y 2 pulgadas, dejando fijos los parámetros de soldadura restantes para obtener un calor de entrada de 46 KJ/ pulgadas (1.8 KJ/mm).

De estos cordones simples se tomaron muestras las cuales se prepararon metalográficamente, tomando macrografías por medio de estereoscopio y midiendo el tamaño máximo del refuerzo, ancho de refuerzo, penetración máxima y ancho de la zona afectada por el calor; además se realizaron mediciones de dureza en la zona de fusión (ZF), zona afectada por el calor (ZAC) y metal base (MB), con la finalidad de conocer el efecto del calor aportado.

Como segunda etapa se realizaron cordones múltiples en ranuras de acuerdo con la geometría solicitada por el procedimiento de soldadura de Tubacero, S. de R.L. de C.V., en donde se extrajeron muestras para la preparación metalográfica y ser analizadas mediante microscopía óptica con la finalidad de observar el efecto del calor aportado en la microestructura, el cual se mantuvo constante a 46 KJ/ pulgadas (1.8 KJ/mm). Además, se tomaron imágenes por estereoscopía para medir la convexidad máxima del refuerzo, el ancho del mismo, la penetración máxima, el ancho de área afectada por el calor; adicionalmente se realizó la medición de dureza para conocer el efecto del calor aportado por cada cordón de soldadura.

Una vez obtenidos los resultados se analizaron y emitieron las conclusiones y recomendaciones necesarias.

En la Figura 3.1 se muestra de manera esquemática la metodología de la experimentación realizada.

Figura 3.1 Esquema de la metodología utilizada en esta investigación.

3.2 Materiales

Para llevar a cabo la experimentación del presente estudio, se realizaron pruebas en una tubería API 5L X70 de 30 pulgadas de diámetro y 0.429 pulgadas de espesor del cual en las Tablas 3.2 y 3.4 se muestra su composición química y propiedades mecánicas respectivamente. Para realizar las soldaduras se utilizó el proceso SAW, con un material de aporte F8A2-EA4-A4 del cual se muestra su composición química y propiedades mecánicas en las Tablas 3.3 y 3.4 respectivamente. En la Figura 3.2, se muestra la microestructura del material base acero observada a 5000X por microscopía electrónica de barrido (SEM, por sus siglas en inglés), la cual consiste en una matriz de ferrita poligonal con presencia de islas de perlita y presencia de carburos finamente dispersos formados por los microaleantes como Cr, Nb y Ti los cuales refuerzan la matriz e incrementan su tenacidad y resistencia mecánica (ver Anexo 1), cabe mencionar

que se midió la microdureza del material base la cual dio como resultado un promedio de 219HV.

Tabla 3.2 Composición química del acero API X70 (% e.p.) (6).

% e.p.	C	Si	Mn	P	s	V	Nb	Ti	Otros
X70	0.12	0.45	1.7	0.025	0.015	(a)	(a)	(a)	(b)
Notas:	Notas: (a) La suma de V, Nb, Ti no deberá exceder 0.15%.								
	(b) Los eleme	(b) Los elementos Cu, Ni, Cr y Mo deden tener máximo 0.50%.							

Tabla 3.3 Composición química del aporte (5).

% e.p.	C	Si	Mn	P	s	V	Nb	Ti	Otros
APORTE	0.12	0.8	1.6	0.030	0.030	No espec.	No espec.	No espec.	Mo 0.4 - 0.60 Cu 0.35

Tabla 3.4 Propiedades mecánicas del material base y aporte (5) (6).

	Esfuerzo de Cedencia (MPa)	Esfuerzo de Máximo (MPa)
Acero X70	485	570
Aporte	540	550-770

Figura 3.2 Micrografía de material base API 5L X70 obtenida por MEB vista a 5000X.

3.3 Procedimiento experimental

Para el estudio de la variación de la geometría se desarrollaron como primer paso cordones circunferenciales sobre la pared del tubo con el proceso SAW con máquinas marca Lincoln, Idealarc DC1000 NA-5S, manteniendo el calor de entrada constante de 46 KJ/ pulgadas (1.8 KJ/mm) y variando el desplazamiento geométrico en un rango de 1 y 2 pulgadas, manteniendo siempre la distancia entre el tubo y el electrodo constante, tal como se indica en la Tabla 3.5. De cada ensayo se obtuvieron 4 probetas seleccionadas en la zona horaria, 3, 6, 9, y 12.

Tabla 3.1 Ensayos realizados en cordones sobre la pared de la tubería.

Número de experimento	Calor aportado (KJ/in)	Desplazamiento del electrodo (in)
1	46	1
2	46	1.25
3	46	1.5
4	46	1.75
5	46	2

Como segundo paso se aplicaron 3 cordones circunferenciales sobre la ranura por medio del proceso SAW, de los cuales 2 se aplicaron por el exterior del tubo y uno por el interior, manteniendo el calor de entrada constante para cada uno de los cordones de acuerdo con el diseño experimental planteado en la Tabla 3.6 y variando el desplazamiento geométrico en un rango de 1 y 2 pulgadas, manteniendo siempre la distancia entre el tubo y el electrodo constante. Se obtuvieron 3 muestras de cada paso de soldadura, es decir, 3 probetas de un cordón, 3 probetas de 2 cordones y 3 probetas de 3 cordones, de cada uno de los desplazamientos de electrodo propuestos.

Tabla 3.2 Ensayos realizados en ranura.

Número de cordones de soldadura	Número de muestras tomadas	Calor aportado (KJ/in)	Desplazamiento del electrodo (in)
1	3	46	1
2	3	61	1
3	3	71	1
1	3	46	1.25
2	3	61	1.25
3	3	71	1.25
1	3	46	1.5
2	3	61	1.5
3	3	71	1.5
1	3	46	1.75
2	3	61	1.75
3	3	71	1.75
1	3	46	2
2	3	61	2
3	3	71	2

Las probetas fueron cortadas y preparadas metalográficamente y atacadas químicamente con el reactivo Beraha's. A fin de poder dimensionar los cordones, estos fueron examinados con un estereoscopio óptico marca Dino Lite Pro, las imágenes obtenidas fueron analizadas mediante el software Dinocapture 2.0 Versión 1.5.23.A, dimensionando parámetros como convexidad, ancho del refuerzo de soldadura, tamaño de la zona afectada por el calor y penetración de la soldadura. En la Figura 3.3 se puede observar cómo se llevaron a cabo las mediciones en los cordones sobre la pared de la tubería y en la Figura 3.4 cómo se llevaron a cabo en cada uno de los cordones sobre la ranura, ver Anexo 2 y 3.

Figura 3.3 Macrografía por medio de estereoscopía de magnitudes medidas de las muestras de cordón simple.

Figura 3. 4 Macrografía por medio de estereoscopía de magnitudes medidas de las muestras de cordones múltiples.

De forma complementaria se realizó la medición de la microdureza de acuerdo al mapeo propuesto en el punto 10.3.7.3 de la especificación API 1104 Welding of pipelines and related facilities, como se ilustra en la Figura 3.5, haciendo 3 indentaciones en cada zona afectada por el calor y 3 indentaciones en la zona de fusión, esto para los cordones aplicados sobre la pared del tubo. Para los cordones aplicados en la ranura se realizaron 3 indentaciones sobre

cada zona afectada por el calor y 3 en la zona de fusión, pero esta vez en la parte superior e inferior de la soldadura tal como se observa en la Figura 3.6, utilizando un microdurómetro marca Wilson Hardness modelo Tukon 2500, ver Anexo 2 y 3.

Figura 3.5 Macrografía por medio de estereoscopía de mapeo de indentaciones en cordones sobre la pared de la tubería.

Figura 3.6 Macrografía por medio de estereoscopía de mapeo de identaciones en cordones sobre la ranura.

CAPÍTULO 4

RESULTADOS Y ANÁLISIS

4.1 Resultados

De acuerdo con la experimentación del presente trabajo, se realizaron las probetas tomando en cuenta diferentes consideraciones, es por eso que en los puntos siguientes se dan los resultados y se analizan los mismos de manera separada.

4.1.1 Cordones sobre la pared de la tubería

En la Figura 4.1 se observan los resultados obtenidos del dimensionamiento de los cordones para las cinco condiciones de desplazamiento del electrodo y en cada una de las probetas tomadas, donde se graficaron la variación de: a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC, con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería (ver Anexo 2).

Se puede observar que la convexidad del cordón y la penetración disminuyen conforme se incrementa el desplazamiento del electrodo, mientras que el ancho del cordón y de la ZAC aumentan con el incremento del desplazamiento del electrodo. Con esto se obtuvo un 49% de reducción máxima de concavidad del cordón, la variación del ancho del cordón fue del 6%, mientras en la penetración se tuvo un 25%.

Cabe mencionar que el ancho de la ZAC muestra una tendencia a crecer, lo cual se debe a un crecimiento en el ancho del cordón.

Figura 4.1 Variación de los parámetros dimensionales del cordón de soldadura, a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería.

En la Figura 4.2 se muestran las zonas de interés de la soldadura en las cuales se realizaron las indentaciones.

Figura 4.2 Zonas de interés de la soldadura donde se realizaron las indentaciones.

En la Figura 4.3 se muestra la variación de la dureza con respecto a la posición en diferentes zonas ZAC1, ZAC2 y Zona de fusión. Se observa que la dureza oscila entre 200 y 240 HV_{500g} con tendencia a disminuir conforme se

incrementa el desplazamiento del electrodo, lo cual no se refleja como una variación significativa ya que la dureza del material base en promedio es de 219HV.

Figura 4.3 Variación de la dureza con respecto al desplazamiento del electrodo en tres zonas: ZAC1, ZAC2 y Zona de fusión; en cordones sobre la pared de la tubería.

4.1.2 Cordones sobre ranura

A continuación, se muestran los resultados obtenidos del dimensionamiento de las uniones de ranura para cada uno de los pasos de soldadura (un cordón, dos cordones y tres cordones) (ver Anexo 3).

En primera instancia se obtuvieron los datos geométricos de un cordón de soldadura colocado sobre una ranura, del cual, se tomaron 3 probetas en cada una de las condiciones de desplazamiento del electrodo, en la Figura 4.4, se observan gráficamente los datos obtenidos.

En los incisos a, c y d de la Figura 4.4 se puede observar que la convexidad del cordón, la penetración y el ancho de la ZAC aumentan conforme se incrementa el desplazamiento del electrodo, esto sucede hasta llegar a 1.75 pulgadas de desplazamiento, después de este valor cae de forma abrupta; en la Figura 4.5 se puede observar el cambio de geometría del cordón, observando una depresión al centro para la condición de desplazamiento de 2 pulgadas.

Por otro lado, en la Figura 4.4c se muestra que el ancho de cordón mantiene una tendencia a crecer conforme incrementa el desplazamiento del electrodo.

Figura 4.4 Variación de los parámetros dimensionales del cordón de soldadura: a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima, d) Tamaño de la ZAC; con respecto al desplazamiento del electrodo (1 cordón).

Figura 4.5 Macrografía por medio de estereoscopía de cambio en la convexidad en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la soldadura.

En la Figura 4.6 se muestran los resultados del dimensionamiento, con 2 cordones de soldadura. En el inciso a) se observa que la convexidad del cordón aumenta conforme se incrementa el desplazamiento del electrodo, esto sucede hasta llegar a 1.75 pulgadas de desplazamiento, ya que al llegar a 2 pulgadas esta disminuye drásticamente.

En el inciso b) se muestra que el ancho del cordón presenta variación importante hasta llegar al desplazamiento de 1.75 pulgadas, a partir de este valor se incrementa de tener valores promedio de 21mm, hasta valores arriba de 27mm.

En la Figura 4.6c se observa que la penetración mantiene una tendencia a disminuir conforme se incrementa el desplazamiento del electrodo, siendo la variación no muy importante hasta el 1.5 pulgadas de desplazamiento.

La Figura 4.6d muestra que el ancho de la ZAC se comporta relativamente constante hasta 1.75 pulgadas de desplazamiento, a partir de este se observa una tendencia a aumentar de tener valores promedio de 4.5mm hasta valores de 6mm.

Figura 4.6 Variación de los parámetros dimensionales del cordón de soldadura: a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima, d) Tamaño de la ZAC; con respecto al desplazamiento del electrodo (2 cordones).

En la Figura 4.7 se muestran los resultados del dimensionamiento de la unión con 3 cordones (2 cordones exteriores y 1 interior).

En el inciso a) se observa que la convexidad del cordón aumenta conforme se incrementa el desplazamiento del electrodo, esto sucede hasta llegar a 1.75 pulgadas de desplazamiento, ya que al llegar a 2 pulgadas esta disminuye drásticamente de un valor superior a los 5mm, hasta un valor por debajo de 2.5mm.

En el inciso b) muestra que el ancho del cordón presenta una variación entre 18 a 22 mm hasta llegar al desplazamiento de 1.75 pulgadas a partir de este valor el ancho del cordón se incrementa de forma drástica, de un valor promedio de 19mm hasta un valor superior a los 25mm.

Para este caso, la ZAC y la penetración no fueron tomadas en cuenta debido a que se consideró penetración completa y el tamaño de la ZAC no varía con respecto al comportamiento anterior al evaluarla en la zona externa.

Figura 4.7 Variación de los parámetros dimensionales del cordón de soldadura: a) Convexidad del cordón, b) Ancho del cordón; con respecto al desplazamiento del electrodo (3 cordones).

El perfil de dureza del cordón de soldadura (ZF, ZAC1 y ZAC2), el cual se muestra en la Figura 4.8, muestra una tendencia a disminuir conforme se incrementa el desplazamiento del cordón. Los valores oscilan entre 250 y 210 HV, teniendo una diferencia no mayor a 50 HV, por consiguiente, no se considera un cambio significativo.

Figura 4.8 Variación de la dureza con respecto al desplazamiento del electrodo en tres zonas: ZAC1, ZAC2 y Zona de fusión; en soldadura sobre la ranura (1, 2 y 3 cordones).

4.2 Análisis

En los resultados obtenidos de los cordones aplicados sobre la pared de la tubería, se puede observar que la convexidad del cordón y la penetración disminuyen conforme se incrementa el desplazamiento del electrodo, esto es debido a que el voltaje y el amperaje son constantes, por lo cual la tasa de depósito se mantiene constante, mientras que el ángulo del electrodo y la pieza de trabajo van en aumento y crea un cambio gradual de un efecto cuesta arriba a un efecto cuesta abajo por lo cual el cordón se va ensanchando.

En cuanto al ancho de la ZAC muestra una tendencia a incrementar, debido a un crecimiento en el ancho del cordón.

En lo que respecta a la dureza, los gradientes obtenidos no son mayores a 50 HV observándose que las propiedades son prácticamente constantes. Esto sugiere que el desplazamiento del electrodo no presenta una influencia en la dureza obtenida en el cordón de soldadura.

En la Figura 4.9 se muestra la variación de la convexidad de los cordones con respecto al desplazamiento del electrodo en aplicación de los cordones de soldadura. Se observa que, cuando se aplica un cordón de soldadura sobre la ranura, la convexidad de éste incrementa entre los desplazamientos del electrodo de 1 – 1.75 pulgadas y al llegar al desplazamiento del electrodo de 2 pulgadas este tiene una súbita disminución, de 2 milímetros hasta llegar a 0.5 milímetros, lo cual se asocia a que el desplazamiento del electrodo es excesivo, y por consiguiente la formación de una depresión en la parte central del cordón de soldadura y un ensanchamiento del mismo. El mismo efecto se puede observar cuando se aplica el segundo cordón.

Al depositarse el tercer cordón sobre la ranura el cual es interior, este realiza un esfuerzo de contracción en la parte interna, promoviendo una deformación en la cara exterior del cordón lo cual elimina la supresión que se tiene al centro del refuerzo de la soldadura e incrementa la convexidad.

Figura 4.9 Convexidades observadas en cada paso de soldadura a diferentes desplazamientos.

En cuanto al ancho del cordón, se observa un aumento conforme se incrementa el desplazamiento del electrodo siempre compensando el incremento con la disminución de la convexidad del refuerzo.

El cambio en la penetración entre 1 cordón y 2 cordones es mínimo ya que el segundo cordón se deposita sobre el primero, y en el tercer cordón, dado que es interior, termina de llenar la ranura, por lo cual se considera como penetración completa.

Cuando se aplica un cordón de soldadura sobre la ranura, el ancho de la ZAC se incrementa conforme aumenta el desplazamiento del electrodo, esto se debe a que el ancho de cordón se incrementa.

En el caso de la aplicación del segundo cordón de soldadura sobre la ranura, el ancho de la ZAC se mantiene constante, esto se debe a que ya cuenta con un cordón de soldadura que contiene o disminuye el calor aportado al material base.

Cuando es aplicado el tercer cordón de soldadura incrementa de manera notoria el ancho de la ZAC, debido a que el aporte de calor es directamente aplicado al material base.

En el caso de la dureza de la zona de fusión, y de cada una de las ZAC se puede decir que no se tiene un cambio que afecte las propiedades del material, ya que se mantienen en el orden de 210-250 HV, teniendo una diferencia menor de 50 HV lo cual no se considera un cambio significativo ya que el metal base presenta una dureza promedio de 219 HV.

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Una vez analizados y discutidos los resultados del presente trabajo, se concluye lo siguiente:

- El desplazamiento del electrodo cambia la geometría del cordón ya que esto se presentó con cada uno de los valores propuestos en esta investigación (1, 1.25, 1.5, 1.75 y 2 pulgadas).
- Existe una estrecha relación entre la geometría del cordón de soldadura y
 el desplazamiento del electrodo, ya que el ángulo de contacto entre el
 electrodo y la pieza de trabajo incrementa conforme se incrementa el
 desplazamiento del electrodo.
- El segundo cordón de soldadura no se considera necesario ya que es una de las causas de que la convexidad o el tamaño de refuerzo quede fuera de lo que solicita la especificación API 1104 Welding of pipelines and related facilities en el punto 7.9.2.
- El desplazamiento del electrodo de 2 pulgadas es excesivo y crea geometrías no deseadas por la supresión que resulta en la convexidad del cordón, con la aplicación del cordón interior logra tener una buena geometría, ya que es la que más se acerca a lo solicitado en la especificación API 1104 en la sección 7.9.2, en donde se menciona que no se deben tener refuerzos mayores a 1/16 de pulgada.
- La dureza del material no se ve afectada por el calor aportado.
- No se presento ningún cambio en la microestructura del material asociado.

5.2 Recomendaciones

De acuerdo con las conclusiones dadas en el presente trabajo, se extienden las siguientes recomendaciones:

 Realizar pruebas a diferentes desplazamientos de electrodo variando el ángulo del mismo, ya que en esta investigación solo se utilizó el electrodo perpendicular a la tubería.

- Realizar pruebas a diferentes desplazamientos de electrodo, aplicando un cordón de soldadura exterior y uno interior, con la finalidad de observar los cambios en el tamaño del refuerzo de soldadura.
- Realizar y calibrar un modelo matemático, con el fin de predecir el comportamiento de la geometría del cordón a diferentes desplazamientos del electrodo en diferentes diámetros de tubería.

BIBLIOGRAFÍA

- 1. Andrew C. Palmer, Roger A. King. Subsea Pipeline Engineering. Second. UK: PennWell Books, 2008. 978-1593701338.
- 2. **Liu, Henry.** *Pipeline Engineering.* New York: Lewis Publishers, 2003. 0-58716-140-0.
- 3. **Society, American Welding.** *Manual para la certificación de inspectores de soldadura.* [trans.] American Weldin Society. Cuarta. Florida: American Welding Society, 2013. p. 317. 978-0-87171-991-1.
- 4. **Welding Handbook Commite.** *Welding Handbook.* [ed.] Annette O'Brien. 9th. Maimi, FI: American Welding Society, 2004. Vol. 2. 0-87171-729-8.
- 5. **American Welding Society.** *Specification for low-alloy steel electrodes and fluxes for sumerged arc welding.* Miami : American Welding Society, 2007. 978-0-87171-073-4.
- 6. **Institute, American Petroleum.** *Specification for line pipe.* 44. Estados Unidos de America: API Publishing Services, 2007. NA.
- 7. Research on the metallurgical behavoir of X70 steel subjected to multi-wire sumerged arc welding. I. Voiculescu, V. Geanta, C. C. Rusu, O. Mircea, L. R. Mistodie, E. Scutelnicu. Galati, Romania: Galati University Press, 2016, Vol. 27. 1221-4639.
- 8. **Weman, Klas.** *Welding Processes Handbook.* Second Edition. Cambridge: Woodhad Publishing, 2012. 978-0-85709-510-7.
- 9. **R. S. Chandel, H. P. Seow, F. L. Cheong.** *Effect of increasing deposition rate on the bead geometry of sumerged arc welds.* Nanyang : Elsevier, 1997. 0924-0136.
- 10. Ravinder Pal Singh, R.K Garg, Dinesh Kumar Shukla. *Mathematical modeling of effect of polarity weld bead geometry in sumerged arc welding*. Punjab: Elsevier, 2016.

- 11. **Hari OM, Sunil Pandey.** *Effect of heat imput on dilution and heat affected zone in sumerged arc welding process.* New Delhi : Indian Academy of Sciences, 2013. 0973-7677.
- 12. Choudhurya Sanatan, Abhay Sharmaa, Uttam Kumar Mohantya, Kasaib Ryu, Komurac Masaharu, Tanakad Manabu, Sugad Tetsuo. *Mathematical model of complex weld penetration profile: A case of square AC waveform arc welding.* Fujisawa: CrossMark, 2017. 1526-6125.
- 13. **C. Pandey, A. Giri, M. M. Mahapatra.** On the Prediction of Effect of Direction of Welding on Bead Geometry and Residual Deformation of Double-sided Fillet Welds. s.l.: International Journal of Steel Structures. 2016. 2093-6311.
- 14. **V. Gunaraj, N. Murugan.** Application of response surface methodology for predicted weld bead quality in sumerged arc welding for pipes. India: Elsevier, 1997. 0924-0136.
- 15. **Serdar Karaoglu, Abdullah Secgin.** *Sensitivity analysis of sumerged arc welding process parameters.* Bornova : Elsevier, 2007.
- 16. **S. Shen, I.N.A. Oguocha, S. Yannacopoulos.** Effect of heat imput on weld bead geometry of sumerged arc welded ASTM A709 grade 50 steel joints. Saskatoon: Elsevier, 2011.
- 17. **M.A. Moradpour, S.H. Hashemi, K. Khalili.** *Multi-objective Optimization of Welding Parameters in sumerged arc welding or API X65 Steel plates.* Birjand: JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL, 2015.
- 18. Saurav Datta, Asish Bandyopadhyay, Pradip Kumar Pal. Grey-based taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. West Bengal: 1433-3015, 2008.
- 19. **N. Murugan, V. Gunaraj.** *Prediction and control of weld bead geomatry and shape relationships in sumerged arc welding of pipes.* Coimbatore: Elsevier, 2005. 0924-0136.
- 20. **William D. Callister, Jr.** *Introdución a la Ciencia e Ingeniería de los Materiales.* Estados Unidos de Norteamerica : Reverté, S. A., 1995. p. 524. 9788429172539.
- 21. **Askeland, Donald R.** *Ciencia e Ingeniería de los Materiales.* Tercera. Mexico: Thomson Editores, 1998. p. 778. 968-7529-36-9.

- 22. **Committe, ASM International Handbook.** *ASM Handbook, Properties and selection: Irons, Steels, And High Performances Alloys.* Estados Unidos de America: ASM International, 2005. Vol. 1. 0-8710-377-7.
- 23. Aramburo P. Gerardo, García G. Sergio, Pérez C. Ramiro, Juaréz I. Julio A. Impacto tecnológico de acero grado API X-70 para la fabricación de ductos de 36" de diametro resistentes al gas amargo. [ed.] Ingenieria. Investigación y Tecnología. Distrito Federal: Universidad Nacional Autónoma de México, 2004. pp. 17-26. Vol. V. 1405-7743.
- 24. **Stelios Kyriakides, Edmundo Corona.** *Mechanics of Offshore Pipelines.* Amsterdam: Elsevier, 2007. Vol. I: Buckling and Collapse. 9780080551401.
- 25. **Pepin, Joel Todd.** Effects of Submerged Arc Weld (SAW) Parameters on Bead Geometry and Notch-Toughness for X70 and X80 Linepipe Steels. Alberta, Canada: University of Alberta, 2009. 978-0-494-53953-8.
- 26. **Weman, Klas.** *Welding Processes Handbook.* Cambridge: Woodhead Publishing Limited, 2003. 0-8493-1773-8.
- 27. Mohsen Kasemi, Masood Aghakhani, Ehsan HaghShenas-Jazi, Ali Behmaneshfar. Optimization of the depht of penetration by welding imput parameters in SAW process using response surface methodology. s.l.: The Minerals, Metals and Materials Society and ASM Intenational, 2016.

ÍNDICE DE TABLAS

CAPÍTULO 2. MARCO TEÓRICO

Tabla 2.1 Composición química del aporte (5).	. 18
Tabla 2.2 Propiedades mecánicas del aporte (5)	. 18
Tabla 2.3 Composición química del acero API 5L X70 (% e.p.) (6)	. 21
Tabla 2.4 Efectos que generan los elementos químicos en tuberías (7)	. 22
Tabla 2.5 Propiedades mecánicas de los aceros API 5L X70 PSL 1 (6)	. 22
Tabla 2.6 Propiedades mecánicas de los aceros API 5L X70 PSL 2 (6)	. 23
CAPÍTULO 3. DESARROLLO DEL PROYECTO	
Tabla 3.5 Ensayos realizados en cordones sobre la pared de la tubería	. 38
Tabla 3.6 Ensavos realizados en ranura	. 39

ÍNDICE DE FIGURAS

CAPÍTULO 2. MARCO TEÓRICO

Figura 2.1 Esquema del proceso de manufactura de tuberías ERW (2) 12
Figura 2.2 Esquema del proceso de manufactura de tuberías UOE (2) 13
Figura 2.3 Esquema del proceso de manufactura de tuberías JCO (2) 14
Figura 2.4 Esquema del proceso de soldadura por arco sumergido (3) 15
Figura 2.5 Equipo para soldadura por arco sumergido (3) 16
Figura 2.6 Designación de materiales de aporte para soldadura por arco
sumergido (5)
Figura 2.7 Efecto de la polaridad en la geometría del cordón de soldadura (8).24
Figura 2.8 Efecto del amperaje en la geometría del cordón de soldadura (8) 25
Figura 2.9 Efecto del voltaje en la geometría del cordón de soldadura (8) 26
Figura 2.10 Efecto de la velocidad de avance en la geometría de la soldadura
con el amperaje y voltaje constantes (8)
Figura 2.11 Efectos del cambio de diámetro del aporte en la geometría del cordór
de soldadura (8)29
Figura 2.12 Efectos del cambio de ángulo del aporte en la geometría del cordór
de soldadura (8)
Figura 2.13 Efecto del desplazamiento del cordón de soldadura en la geometría
del cordón de soldadura (4)
Figura 2.14 Efecto de la inclinación de la pieza de trabajo sobre la geometría de
cordón de soldadura (4)33
CAPÍTULO 3. DESARROLLO DEL PROYECTO
Figura 3.1 Esquema de la metodología utilizada en esta investigación 36

Figura 3.3 Macrografía por medio de estereoscopía de magnitudes medidas de las muestras de cordón simple	Figura 3.2 Micrografia de material base API 5L X/U obtenida por MEB vista a
las muestras de cordón simple	5000X
Figura 3. 4 Macrografía por medio de estereoscopía de magnitudes medidas de las muestras de cordones múltiples	Figura 3.3 Macrografía por medio de estereoscopía de magnitudes medidas de
las muestras de cordones múltiples	las muestras de cordón simple40
Figura 3.5 Macrografía por medio de estereoscopía de mapeo de indentaciones en cordones sobre la pared de la tubería	Figura 3. 4 Macrografía por medio de estereoscopía de magnitudes medidas de
en cordones sobre la pared de la tubería	las muestras de cordones múltiples41
Figura 3.6 Macrografía por medio de estereoscopía de mapeo de identaciones en cordones sobre la ranura	Figura 3.5 Macrografía por medio de estereoscopía de mapeo de indentaciones
en cordones sobre la ranura	en cordones sobre la pared de la tubería42
CAPÍTULO 4. RESULTADOS Y ANÁLISIS Figura 4.1 Variación de los parámetros dimensionales del cordón de soldadura, a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería	Figura 3.6 Macrografía por medio de estereoscopía de mapeo de identaciones
Figura 4.1 Variación de los parámetros dimensionales del cordón de soldadura, a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería	en cordones sobre la ranura43
Figura 4.1 Variación de los parámetros dimensionales del cordón de soldadura, a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería	
Figura 4.1 Variación de los parámetros dimensionales del cordón de soldadura, a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería	CAPÍTULO 4. RESULTADOS Y ANÁLISIS
a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d) Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería	
Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones sobre la pared de la tubería	Figura 4.1 Variación de los parámetros dimensionales del cordón de soldadura,
sobre la pared de la tubería	a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima y d)
Figura 4.2 Zonas de interés de la soldadura donde se realizaron las indentaciones	Ancho de la ZAC con respecto al desplazamiento del electrodo en cordones
indentaciones	sobre la pared de la tubería46
Figura 4.3 Variación de la dureza con respecto al desplazamiento del electrodo en tres zonas: ZAC1, ZAC2 y Zona de fusión; en cordones sobre la pared de la tubería	Figura 4.2 Zonas de interés de la soldadura donde se realizaron las
en tres zonas: ZAC1, ZAC2 y Zona de fusión; en cordones sobre la pared de la tubería	indentaciones
la tubería	Figura 4.3 Variación de la dureza con respecto al desplazamiento del electrodo
Figura 4.4 Variación de los parámetros dimensionales del cordón de soldadura: a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima, d) Tamaño de la ZAC; con respecto al desplazamiento del electrodo (1 cordón). 49 Figura 4.5 Macrografía por medio de estereoscopía de cambio en la convexidad en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la	en tres zonas: ZAC1, ZAC2 y Zona de fusión; en cordones sobre la pared de
a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima, d) Tamaño de la ZAC; con respecto al desplazamiento del electrodo (1 cordón)	la tubería47
Tamaño de la ZAC; con respecto al desplazamiento del electrodo (1 cordón). 49 Figura 4.5 Macrografía por medio de estereoscopía de cambio en la convexidad en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la	Figura 4.4 Variación de los parámetros dimensionales del cordón de soldadura:
Figura 4.5 Macrografía por medio de estereoscopía de cambio en la convexidad en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la	a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima, d)
Figura 4.5 Macrografía por medio de estereoscopía de cambio en la convexidad en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la	Tamaño de la ZAC; con respecto al desplazamiento del electrodo (1 cordón).
Figura 4.5 Macrografía por medio de estereoscopía de cambio en la convexidad en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la	49
en desplazamiento de 1.25 (lado izquierdo) y 2 pulgadas (lado derecho) donde se puede observar una supresión al centro del refuerzo de la	
donde se puede observar una supresión al centro del refuerzo de la	
·	, , , , , , , , , , , , , , , , , , , ,
50luauula	soldadura

Figura 4.6 Variación de los parametros dimensionales del cordon de soldadura:
a) Convexidad del cordón, b) Ancho del cordón, c) Penetración máxima, d)
Tamaño de la ZAC; con respecto al desplazamiento del electrodo (2
cordones)50
Figura 4.7 Variación de los parámetros dimensionales del cordón de soldadura:
a) Convexidad del cordón, b) Ancho del cordón; con respecto al
desplazamiento del electrodo (3 cordones)
Figura 4.8 Variación de la dureza con respecto al desplazamiento del electrodo
en tres zonas: ZAC1, ZAC2 y Zona de fusión; en soldadura sobre la ranura
(1, 2 y 3 cordones)52
Figura 4.9 Convexidades observadas en cada paso de soldadura a diferentes
desplazamientos54

Anexo 1

Imágenes y espectros EDS asociados para la identificación de las partículas ajenas a la matriz, como carburos de Ti, Nb y Cr.

Anexo 2

Cordones sobre la pared de la tubería

Desplazamiento= 1	Horario= 3				
NOTE INCOMES ACTION TO THE THE MAY PROMISE THE A RECURSION.	Geometría del cordón (mn	n)			
	Convexidad 3.111				
Religion Micros	Ancho del cordón 16.923	3			
Reference Making L=2 111 mm	Penetración 6.368				
Convended Magna L=16 X23 mm	Ancho de ZAC 3.058				
Maxima Penetacion L=0.168 mm Anche de ZAC L=0.00 mm	Durezas (HV)				
		33			
		37			
	ZAC 2 237 241 2	38			
Desplazamiento= 1	Horario= 6				
NOTES INSOCIONE 2010/00/10 PARTIEN RIQUINI PRO LES EN 10 GARBERTAN	Geometría del cordón (mm)				
	Convexidad 2.299				
Heneroo Msomo L=2.299 mm	Ancho del cordón 19.928				
Ancho del Riflerzo L=19.028 mm Peneración Vácima L=5.235 mm	Penetración 5.325				
Anthogo ZAC L-3:00 mm	Ancho de ZAC 3.636				
L=3.00 mr	Durezas (HV)				
		35			
		22			
		19			
Desplazamiento= 1	Horario= 9				
DOTE: BERNICES DOCTOROS NO DOCUMENT MEDICAL PLANT DE LA RECEIRANTE DE LA RECEIRANTE		Geometría del cordón (mm)			
	Convexidad 2.903				
Returned Macring L=2 903 mm	Ancho del cordón 18.830				
Ancho ded Relutico L=18.830 mm L+6.210 mm	Penetración 6.210				
		4.195			
Anono de ZAC L-4.190 mm	Durezas (HV)	20			
		38 36			
		36 28			
Desplazamiento= 1	Horario= 12	20			
NO.11 15500004 2017064113-0125 Market Majsfreton: 15-2x 165-500000	Geometría del cordón (mm)				
	Convexidad 3.076				
Comresidad Mairra L+3 070 mm	Ancho del cordón 19.701				
Ancho de Refuerzo Lesto 201 mm	Penetración 5.658				
Penetración Máxima L=5.656 mm	Ancho de ZAC 4.725				
Archo de ZVC E-4 725 m	Durezas (HV)				
154 725 nun		41			
	ZAC 1 225 225 22	27			
		35			

Desplazamiento= 1.25

Horario= 3

Geometría del cordón (mm)					
Convexidad		2.533			
Ancho del cordón		19.928			
Penetración	4.665				
Ancho de ZAC	4.363				
Durezas (HV)					
ZF	233	229	231		
ZAC 1	224	224	225		
ZAC 2 233 229 231					

Desplazamiento= 1.25

Horario= 6

Geometría del cordón (mm)					
Convexidad		2.241			
Ancho del cordón		19167			
Penetración	5.319				
Ancho de ZAC	4.138				
Durezas (HV)					
ZF	229	233	229		
ZAC 1	225	227	224		
ZAC 2 227 226 227					

Desplazamiento= 1.25

Horario= 9

Geometría del cordón (mm)					
Convexidad	3.054				
Ancho del cordón	17.187				
Penetración	6.679				
Ancho de ZAC	4.012				
Durezas (HV)					
ZF	235	229	233		
ZAC 1	226 227 225				
ZAC 2 235 229 233					

Desplazamiento= 1.25

Horario= 12

Geometría del cordón (mm)						
Convexidad 3.871						
Ancho del cordón		26.594				
Penetración	3.535					
Ancho de ZAC	2.858					
Durez	as (HV)				
ZF	232	233	233			
ZAC 1	213	211	213			
ZAC 2	212	215	212			

Desplazamiento= 1.5

Horario= 3

Geometría del cordón (mm)					
Convexidad	2.514				
Ancho del cordón		18.784			
Penetración		5.607			
Ancho de ZAC	4.599				
Durezas (HV)					
ZF	221	229	229		
ZAC 1	225	216	221		
ZAC 2 223 217 225					

Desplazamiento= 1.5

Horario= 6

Geometría del cordón (mm)					
Convexidad	1.920				
Ancho del cordón		20.600			
Penetración		4.760			
Ancho de ZAC	4.217				
Durezas (HV)					
ZF	236	223	219		
ZAC 1	229	222	219		
7AC 2	227	227	232		

Desplazamiento= 1.5

Horario= 9

Geometría del cordón (mm)					
Convexidad		2.161			
Ancho del cordón		19.102			
Penetración		4.682			
Ancho de ZAC	5.105				
Durezas (HV)					
ZF	240	229	240		
ZAC 1	231	227	233		
ZAC 2 223 229 224					

Desplazamiento= 1.5

						4	•
_	\sim	ra	r	\sim	_	1	- 2
	u	ıa		u	_		_

Geometría del cordón (mm)					
Convexidad	2.968				
Ancho del cordón	26.270				
Penetración	4.763				
Ancho de ZAC	5.278				
Durezas (HV)					
ZF	221	214	226		
ZAC 1	230	224	224		
ZAC 2	225	218	216		

Desplazamiento= 1.75

Horario= 3

Geometría del cordón (mm)						
Convexidad		1.954				
Ancho del cordón		19.907				
Penetración	4.649					
Ancho de ZAC	3.956					
Durezas (HV)						
ZF	235	237	234			
ZAC 1	221	221	223			
ZAC 2	221	221	221			

Desplazamiento= 1.75

Horario= 6

Geometría del cordón (mm)					
Convexidad		2.563			
Ancho del cordón		19.935			
Penetración	4.925				
Ancho de ZAC	4.893				
Durez	Durezas (HV)				
ZF	229 228 229				
ZAC 1	221	225	226		
ZAC 2	224	225	223		

Desplazamiento= 1.75

Horario= 9

Geometría del cordón (mm)					
Convexidad		2.670			
Ancho del cordón		19.331			
Penetración	4.394				
Ancho de ZAC	4.145				
Durezas (HV)					
ZF	232 236 238				
ZAC 1	233	228	229		
ZAC 2 229 230 2					

Desplazamiento= 1.75

Horario= 12

Geometría del cordón (mm)					
Convexidad		2.468			
Ancho del cordón		19.940			
Penetración	4.568				
Ancho de ZAC	4.449				
Durezas (HV)					
ZF	226 223 223				
ZAC 1	1 213 214 218				
ZAC 2 213 217 213					

Desplazamiento= 2

Horario= 3

Geometría del cordón (mm)				
Convexidad	2.274			
Ancho del cordón	19.340			
Penetración	4.794			
Ancho de ZAC	4.364			
Durezas (HV)				
ZF	- 222 228 22			
ZAC 1	234	229	222	
ZAC 2	218	225	225	

Desplazamiento= 2

Horario= 6

Geometría del cordón (mm)					
Convexidad		1.863			
Ancho del cordón		20.985			
Penetración	4.630				
Ancho de ZAC	4.378				
Durez	as (HV)			
ZF	235 223 230				
ZAC 1	230	227	234		
ZAC 2	221	222	222		

Desplazamiento= 2

Horario= 9

Geometría del cordón (mm)					
Convexidad		2.011			
Ancho del cordón		20.030			
Penetración	4.353				
Ancho de ZAC	4.122				
Durezas (HV)					
ZF	237 226 235				
ZAC 1	1 278 278 264		264		
ZAC 2	224	232	225		

Desplazamiento= 2	Horario= 12
2006. INVAVIOR: SELECTION INCIDENT ARE FOR MANAGEMENTAL INCIDENTALS.	Geometría del cordón (mm)
	Convexidad 3.334
Reducto Matimo	Ancho del cordón 23.969
Andro cell debetz	Penetración 5.042
Le20 900 mm Pentitiono Mixima Le50 927 mm	Ancho de ZAC 5.474
	Durezas (HV)
Aronon, AC L+5.474 mm	ZF 205 213 222
	ZAC 1 208 216 218
	ZAC 2 218 208 219

Anexo 3

Cordones múltiples sobre ranura

$X_1-X_2C-MX_3$

X₁= Desplazamiento del electrodo

X₂= Número de cordones

X₃= Número de muestra

1-1C-M1

	Geometría del cordón (mm)				
Cor	nvexida	ad		1.765	
And	ho del	cordón		17.672	
Per	netracio	ón		6.253	
And	Ancho de ZAC			3.841	
Durezas (HV)					
	ZF	SUP.	224	232	233
		INF.	240	243	240
Z	AC 1	SUP.	229	230	227
		INF.	233	225	229
Z	AC 2	SUP.	244	245	239
		INF.	228	230	234

1-1C-M2

Geometría del cordón (mm)					
Convexida	ad		1.509		
Ancho del	cordón		17.327		
Penetracio	ón		6.069		
Ancho de	ZAC		3.618		
Durezas (HV)					
ZF	SUP.	238	236	237	
	INF.	238	234	239	
ZAC 1	SUP.	233	233	231	
	INF.	224	222	226	
ZAC 2	SUP.	232	234	233	
	INF.	226	228	227	

1-1C-M3

Geometría del cordón (mm)					
Convexida	ad		1.850		
Ancho del	cordón		17.339		
Penetracio	ón		6.565		
Ancho de	ZAC		3.662		
Durezas (HV)					
ZF	SUP.	233	234	231	
	INF.	231	233	233	
ZAC 1	SUP.	233	233	230	
	INF.	229	229	230	
ZAC 2	SUP.	235	233	232	
	INF.	229	227	228	

1-2C-M1

Geometría del cordón (mm)					
Convexida	ad		4.780		
Ancho del	cordón		19.342		
Penetracio	ón		6.950		
Ancho de	ZAC		4.051		
Durezas (HV)					
ZF	SUP.	242	245	247	
	INF.	238	240	235	
ZAC 1	SUP.	237	237	232	
	INF.	226	232	234	
ZAC 2	SUP.	230	235	229	
	INF.	230	232	234	

1-2C-M2

Geometría del cordón (mm))
Convexida	ad		4.317	
Ancho del	cordón		19.520	
Penetración			6.605	
Ancho de ZAC		4.436		
Durezas (HV)				
ZF	SUP.	234	235	246
	INF.	245	245	247
ZAC 1	SUP.	225	219	223
	INF.	236	237	239
ZAC 2	SUP.	222	219	223
	INF.	239	237	233

1-2C-M3

Geometría del cordón (mm)					
Convexida	ad		4.459		
Ancho del	cordón		19.309		
Penetración			6.583		
Ancho de	Ancho de ZAC		4.377		
Durezas (HV)					
ZF	SUP.	246	242	238	
	INF.	235	234	231	
ZAC 1	SUP.	221	219	222	
	INF.	224	226	225	
ZAC 2	SUP.	221	222	222	
	INF.	224	228	223	

1-3C-M1

Geometría del cordón (mm)				
Convexida	ad		4.200	
Ancho del	cordón		19.274	
Penetracio	ón	C	OMPLE ^T	ГА
Ancho de ZAC		3.846		
Durezas (HV)				
ZF	SUP.	239	239	242
	INF.	240	243	240
ZAC 1	SUP.	252	253	241
	INF.	226	226	225
ZAC 2	SUP.	218	223	220
	INF.	224	225	218

1-3C-M2

Geometría del cordón (mm)					
Convexida	ad		4.686		
Ancho del	cordón		18.620		
Penetracio	ón	C	OMPLE ^T	TΑ	
Ancho de	ZAC	4.279			
Durezas (HV)					
ZF	SUP.	229	226	227	
	INF.	229	230	225	
ZAC 1	SUP.	220	224	225	
	INF.	227	223	226	
ZAC 2	SUP.	227	228	223	
	INF.	223	225	222	

1-3C-M3

Geometría del cordón (mm))
Convexida	ad		4.680	
Ancho del	cordón		19.143	
Penetración		C	OMPLE ⁻	ГА
Ancho de ZAC		3.710		
Durezas (HV)				
ZF	SUP.	239	244	243
	INF.	226	224	228
ZAC 1	SUP.	230	225	234
	INF.	227	226	228
ZAC 2	SUP.	224	227	224
	INF.	230	231	231

1.25-1C-M1

-				
Geometría del cordón (mm)				
Convexida	ad		1.671	
Ancho del	cordón		17.169	
Penetración			6.914	
Ancho de	ZAC	3.897		
Durezas (HV)				
ZF	SUP.	227	223	221
	INF.	222	225	223
ZAC 1	SUP.	217	215	217
	INF.	212	216	209
ZAC 2	SUP.	218	214	211
	INF.	216	210	212

1.25-1C-M2

Geometría del cordón (mm)					
Convexida	ad		1.530		
Ancho del	cordón		19.167		
Penetración			6.895		
Ancho de	Ancho de ZAC		3.974		
Durezas (HV)					
ZF	SUP.	228	225	225	
	INF.	223	225	225	
ZAC 1	SUP.	213	219	213	
	INF.	217	214	211	
ZAC 2	SUP.	213	213	215	
	INF.	211	219	216	

1.25-1C-M3

Geometría del cordón (mm)					
Convexida	ad		1.393		
Ancho del	cordón		15.479		
Penetracio	ón		7.231		
Ancho de	ZAC		3.989		
Durezas (HV)					
ZF	SUP.	223	224	229	
	INF.	229	228	229	
ZAC 1	SUP.	222	223	221	
	INF.	218	225	222	
ZAC 2	SUP.	217	219	219	
	INF.	221	218	214	

1.25-2C-M1

•	•				
	Geometría del cordón (mm)				
	Convexida	ad		3.734	
	Ancho del	cordón		21.272	
	Penetracio	ón	7.242		
	Ancho de ZAC		4.883		
Durezas (HV)					
	ZF	SUP.	223	225	227
		INF.	222	224	228
	ZAC 1	SUP.	215	211	213
		INF.	211	218	216
	ZAC 2	SUP.	215	215	211
		INF.	221	216	217

1.25-2C-M2

Geometría del cordón (mm)					
Convexida	ad		4.181		
Ancho del	cordón		2.876		
Penetracio	Penetración		7.134		
Ancho de ZAC		4.782			
Durezas (HV)					
ZF	SUP.	221	223	225	
	INF.	221	226	225	
ZAC 1	SUP.	215	212	209	
	INF.	219	215	217	
ZAC 2	SUP.	215	209	210	
	INF.	213	218	217	

1.25-2C-M3

Geometría del cordón (mm)					
Convexida	ad		3.891		
Ancho del	cordón		21.905		
Penetracio	ón		7.052		
Ancho de ZAC		5.021			
Durezas (HV)					
ZF	SUP.	226	228	221	
	INF.	215	221	221	
ZAC 1	SUP.	216	215	215	
	INF.	217	214	214	
ZAC 2	SUP.	214	215	211	
	INF.	215	212	215	

1.25-3C-M1

I					
Geometría del cordón (mm)					
Convexida	ad		4.056		
Ancho del	cordón		22.170		
Penetracio	ón	C	OMPLE [*]	ГА	
Ancho de	ZAC		6.043		
Durezas (HV)					
ZF	SUP.	227	229	224	
	INF.	220	227	225	
ZAC 1	SUP.	230	229	225	
	INF.	216	215	212	
ZAC 2	SUP.	225	224	222	
	INF.	219	210	212	

1.25-3C-M2

•						
	Geometría del cordón (mm)					
	Convexida	ad		3.995		
	Ancho del	cordón		21.868		
	Penetracio	ón	C	OMPLET	ГА	
	Ancho de ZAC			6.361		
Durezas (HV)						
	ZF	SUP.	236	211	239	
		INF.	219	218	220	
	ZAC 1	SUP.	239	238	235	
		INF.	217	213	214	
	ZAC 2	SUP.	232	212	211	
		INF.	213	211	211	

1.25-3C-M3

•					
Geometría del cordón (mm)					
Convexida	ad		3.981		
Ancho del	cordón		22.614		
Penetracio	ón	C	OMPLE ⁻	ГА	
Ancho de ZAC			5.583		
Durezas (HV)					
ZF	SUP.	229	229	236	
	INF.	221	220	219	
ZAC 1	SUP.	232	233	226	
	INF.	215	207	215	
ZAC 2	SUP.	235	228	228	
	INF.	205	209	206	

1.5-1C-M1

Geometría del cordón (mm)					
Convexida	ad		1.912		
Ancho del	cordón		16.556		
Penetracio	ón		8.426		
Ancho de	Ancho de ZAC		4.588		
Durezas (HV)					
ZF	SUP.	258	243	259	
	INF.	246	237	245	
ZAC 1	SUP.	239	236	233	
	INF.	237	243	245	
ZAC 2	SUP.	236	237	236	
	INF.	245	240	239	

1.5-1C-M2

Geometría del cordón (mm)					
Convexida	ad		1.864		
Ancho del	cordón		15.963		
Penetració	ón		8.484		
Ancho de	ZAC		4.537		
Durezas (HV)					
ZF	SUP.	233	232	234	
	INF.	229	232	230	
ZAC 1	SUP.	224	226	226	
	INF.	232	231	231	
ZAC 2	SUP.	234	235	232	
	INF.	231	232	233	

1.5-1C-M3

•					
Geometría del cordón (mm)					
Convexida	ad		1.899		
Ancho del	cordón		16.849		
Penetracio	ón		8.153		
Ancho de	Ancho de ZAC		4.066		
Durezas (HV)					
ZF	SUP.	232	234	232	
	INF.	236	236	233	
ZAC 1	SUP.	224	224	225	
	INF.	227	225	223	
ZAC 2	SUP.	231	230	229	
	INF.	225	224	227	

1.5-2C-M1

Geometría del cordón (mm)					
Convexida	ad		6.104		
Ancho del	cordón		19.783		
Penetracio	ón		7.651		
Ancho de	Ancho de ZAC		4.900		
Durezas (HV)					
ZF	SUP.	236	235	236	
	INF.	232	231	232	
ZAC 1	SUP.	222	218	224	
	INF.	229	224	222	
ZAC 2	SUP.	224	221	219	
	INF.	234	232	239	

1.5-2C-M2

Geometría del cordón (mm)					
Convexida	ad		5.183		
Ancho del	cordón		19.122		
Penetracio	ón		5.957		
Ancho de	Ancho de ZAC		3.532		
Durezas (HV)					
ZF	SUP.	232	233	234	
	INF.	228	230	230	
ZAC 1	SUP.	232	234	231	
	INF.	226	228	228	
ZAC 2	SUP.	222	225	222	
	INF.	233	228	228	

1.5-2C-M3

,					
Geometría del cordón (mm)					
Convexida	ad		4.523		
Ancho del	cordón		19.639		
Penetracio	ón		6.876		
Ancho de ZAC			4.658		
Durezas (HV)					
ZF	SUP.	227	227	228	
	INF.	220	223	224	
ZAC 1	SUP.	233	233	231	
	INF.	222	224	220	
ZAC 2	SUP.	222	223	223	
	INF.	222	221	224	

1.5-3C-M1

•						
	Geometría del cordón (mm)					
	Convexida	ad		4.821		
	Ancho del	cordón		18.094		
	Penetracio	ón	C	OMPLET	ГА	
	Ancho de ZAC			3.296		
Durezas (HV)						
	ZF	SUP.	237	241	241	
		INF.	231	236	233	
	ZAC 1	SUP.	223	218	218	
		INF.	220	216	218	
	ZAC 2	SUP.	234	239	233	
		INF.	219	220	217	

1.5-3C-M2

Geometría del cordón (mm)					
Convexida	ad		4.434		
Ancho del	cordón		18.323		
Penetracio	ón	C	OMPLE ^T	ГА	
Ancho de ZAC		5.980			
Durezas (HV)					
ZF	SUP.	243	238	239	
	INF.	228	228	226	
ZAC 1	SUP.	220	215	214	
	INF.	222	223	217	
ZAC 2	SUP.	245	239	243	
	INF.	229	233	230	

1.5-3C-M3

Geoi	Geometría del cordón (mm)					
Convexida	ad		4.831			
Ancho del	cordón		17.947			
Penetracio	ón	C	OMPLE ^T	ГА		
Ancho de ZAC			4.177			
Durezas (HV)						
ZF	SUP.	244	240	245		
	INF.	221	223	223		
ZAC 1	SUP.	240	235	240		
	INF.	217	213	218		
ZAC 2	SUP.	238	237	240		
	INF.	220	217	220		

1.75-1C-M1

1					
Geometría del cordón (mm)					
Convexida	ad		1.802		
Ancho del	cordón		17.982		
Penetracio	ón		8.128		
Ancho de	ZAC		4.319		
Durezas (HV)					
ZF	SUP.	231	230	236	
	INF.	229	227	223	
ZAC 1	SUP.	218	215	215	
	INF.	213	213	212	
ZAC 2	SUP.	219	222	217	
	INF.	226	225	221	

1.75-1C-M2

• •	_					
Geometría del cordón (mm))	
	Convexida	ad	1.894			
	Ancho del	cordón		17.227		
	Penetracio	ón	7.731			
	Ancho de	ZAC	4.329			
		as (HV	')			
	ZF	SUP.	224	224	229	
		INF.	226	230	229	
	ZAC 1	SUP.	226	230	224	
		INF.	225	228	224	
	ZAC 2	SUP.	229	230	224	
		INF.	225	228	229	

1.75-1C-M3

•	•					
Geometría del cordón (mm))	
	Convexida	ad		1.949		
	Ancho del	cordón		18.754		
	Penetracio	ón		8.825		
	Ancho de	ZAC	4.243			
		as (HV	')			
	ZF	SUP.	221	218	221	
		INF.	222	227	224	
	ZAC 1	SUP.	221	227	227	
		INF.	223	226	223	
	ZAC 2	SUP.	227	226	225	
		INF.	223	226	227	

1.75-2C-M1

-				
Geometría del cordón (mm)				
Convexida	ad		5.258	
Ancho del	cordón		20.883	
Penetracio	ón		6.526	
Ancho de	ZAC	4.660		
Durezas (HV)				
ZF	SUP.	232	228	224
	INF.	225	233	232
ZAC 1	SUP.	221	223	222
	INF.	224	223	220
ZAC 2	SUP.	234	217	213
	INF.	222	222	223

1.75-2C-M2

Geometría del cordón (mm)					
Convexida	ad		5.295		
Ancho del	cordón		19.894		
Penetracio	ón		6.289		
Ancho de	ZAC		4.328		
Durezas (HV)					
ZF	SUP.	227	227	232	
	INF.	229	229	230	
ZAC 1	SUP.	224	229	225	
	INF.	229	233	232	
ZAC 2	SUP.	228	224	228	
	INF.	231	232	230	

1.75-2C-M3

•	<u> </u>					
	Geometría del cordón (mm)					
	Convexida	ad		5.480		
	Ancho del	cordón		19.972		
	Penetracio	ón		5.849		
	Ancho de	ZAC	4.228			
Durezas (HV)						
	ZF	SUP.	227	229	224	
		INF.	226	226	225	
	ZAC 1	SUP.	216	217	214	
		INF.	223	224	220	
	ZAC 2	SUP.	215	217	219	
		INF.	224	220	224	

1.75-3C-M1

-				
Geometría del cordón (mm)				
Convexida	ad		5.038	
Ancho del	cordón		20.408	
Penetracio	ón	C	OMPLE ⁻	ГА
Ancho de	ZAC	4.244		
Durezas (HV)				
ZF	SUP.	236	242	240
	INF.	226	231	226
ZAC 1	SUP.	225	213	216
	INF.	210	208	206
ZAC 2	SUP.	232	224	220
	INF.	221	221	225

1.75-3C-M2

Geometría del cordón (mm)					
Convexida	ad	5.022			
Ancho del	cordón		20.499		
Penetracio	ón	C	OMPLE ⁻	ГА	
Ancho de	ZAC	6.710			
Durezas (HV)					
ZF	SUP.	224	235	226	
	INF.	208	220	223	
ZAC 1	SUP.	212	204	204	
	INF.	209	203	204	
ZAC 2	SUP.	224	216	215	
	INF.	215	214	222	

1.75-3C-M3

<u> </u>					
Geometría del cordón (mm)					
Convexida	ad		5.112		
Ancho del	cordón		18.792		
Penetracio	ón	C	OMPLE	ГА	
Ancho de	ZAC		6.619		
Durezas (HV)					
ZF	SUP.	235	237	236	
	INF.	224	227	222	
ZAC 1	SUP.	232	221	211	
	INF.	221	215	213	
ZAC 2	SUP.	215	212	217	
	INF.	219	216	220	

2-1C-M1

Geometría del cordón (mm)						
Convexida	ad	0.511				
Ancho del	cordón		19.201			
Penetracio	ón	5.917				
Ancho de	ZAC	3.601				
	as (HV	()				
ZF	SUP.	221	229	229		
	INF.	224	226	227		
ZAC 1	SUP.	219	216	215		
	INF.	222	222	224		
ZAC 2	SUP.	218	216	215		
	INF.	214	220	219		

2-1C-M2

Geometría del cordón (mm)					
Convexida	ad		0.455		
Ancho del	cordón		18.057		
Penetracio	ón		6.067		
Ancho de	ZAC		3.784		
Durezas (HV)					
ZF	SUP.	228	226	226	
	INF.	229	225	223	
ZAC 1	SUP.	222	216	218	
	INF.	215	219	216	
ZAC 2	SUP.	220	216	214	
	INF.	216	219	216	

2-1C-M3

Geor	metría de	el cord	ón (mm)
Convexida	ad		0.560	
Ancho del	cordón		19.006	
Penetracio	ón		6.126	
Ancho de	ZAC		4.101	
Durezas (HV)				
ZF	SUP.	223	224	225
	INF.	232	236	227
ZAC 1	SUP.	222	226	223
	INF.	219	222	224
ZAC 2	SUP.	224	222	221
	INF.	218	222	218

2-2C-M1

Geor	metría de	el cord	ón (mm)
Convexida	ad		2.114	
Ancho del	cordón		27.135	
Penetracio	ón		4.842	
Ancho de	ZAC	5.308		
Durezas (HV)				
ZF	SUP.	221	224	223
	INF.	210	215	212
ZAC 1	SUP.	219	211	210
	INF.	215	218	212
ZAC 2	SUP.	212	218	217
	INF.	211	214	218

2-2C-M2

	Geor	netría de	el cord	ón (mm)
	Geometría d Convexidad Ancho del cordón Penetración Ancho de ZAC Dure: ZF SUP. INF. ZAC 1 SUP. INF. ZAC 2 SUP. INF.	1.956			
		cordón	n 26.281		
		ón	4.900		
	Ancho de	Ancho de ZAC 5.945			
		Superior Superior			
	ZF	SUP.	220	225	222
		INF.	221	227	217
	ZAC 1	SUP.	212	211	212
		INF.	219	218	221
	ZAC 2	SUP.	219	216	219
		INF.	215	217	214

2-2C-M3

Geometría del cordón (mm)					
Convexidad		2.307			
Ancho del cordón		27.825			
Penetración		5.116			
Ancho de ZAC		5.958			
Durezas (HV)					
ZF	SUP.	218	224	222	
	INF.	215	221	218	
ZAC 1	SUP.	211	219	210	
	INF.	213	217	218	
ZAC 2	SUP.	212	213	208	
	INF.	216	216	212	

2-3C-M1

Geometría del cordón (mm)					
Convexidad		2.193			
Ancho del cordón		25.277			
Penetración		COMPLETA			
Ancho de ZAC		4.865			
Durezas (HV)					
ZF	SUP.	222	225	226	
	INF.	223	229	226	
ZAC 1	SUP.	221	219	216	
	INF.	221	214	216	
ZAC 2	SUP.	220	216	215	
	INF.	219	214	217	

2-3C-M2

Geometría del cordón (mm)					
Convexidad		2.404			
Ancho del cordón		23.917			
Penetración		COMPLETA			
Ancho de ZAC		5.845			
Durezas (HV)					
ZF	SUP.	222	226	225	
	INF.	223	225	227	
ZAC 1	SUP.	223	213	211	
	INF.	215	213	210	
ZAC 2	SUP.	216	203	206	
	INF.	216	214	216	

2-3C-M3

	Geor	Geometría del cordón (mm)			
	Convexidad Ancho del cordón		2.449		
			23.520		
	Penetracio	ón	COMPLET AC 6.730		Ā
	Ancho de	ZAC			
	Durezas (HV)				
	ZF	SUP.	222	224	222
		INF.	226	223	226
	ZAC 1	SUP.	214	218	210
		INF.	220	215	218
	ZAC 2	SUP.	213	214	211
		INF.	215	212	219